本文已被:浏览 403次 下载 1410次
Received:July 29, 2023 Revised:September 01, 2023
Received:July 29, 2023 Revised:September 01, 2023
中文摘要: 针对传统的反演方法过于其依赖初始模型, 导致结果不稳定与计算效率低的问题, 提出一种融合独立循环神经网络和粒子群优化算法的随钻测井实时反演方法. 首先, 通过地层模型正演模拟产生的序列数据, 建立独立循环神经网络模型, 并引入注意力机制强调关键特征在随钻测井反演中的作用; 其次, 在粒子群优化算法中引入随机惯性权重提高粒子群算法的全局和局部搜索能力, 利用粒子群优化算法对神经网络模型进行超参数优化; 最后, 在正演模拟测试集与某油田1931 –2132 m段的测井数据测试集上分别进行消融实验与对比实验, 结果证明, 粒子群算法与注意力机制可以有效提高预测精度, 且该方法在各个方面的反演性能均优于长短期记忆神经网络、双向长短期记忆神经网络以及门控循环单元网络模型, 满足随钻测井数据实时反演的需要.
Abstract:Aiming at the problem that traditional inversion methods excessively rely on the initial model, resulting in unstable results and low computational efficiency, a real-time inversion method for logging while drilling (LWD) is proposed by integrating independent recurrent neural network and particle swarm optimization algorithm. First, an independent recurrent neural network model is built from sequence data generated by stratigraphic forward modeling, and an attention mechanism is introduced to emphasize the role of key features in the LWD inversion. Next, stochastic inertia weights are introduced into a particle swarm optimization algorithm to improve its global and local search capabilities, and hyperparameter-optimization of neural network model is carried out using the particle swarm optimization algorithm. Finally, ablation experiments and comparison experiments are conducted on the test set of forward simulation and the test set of logging data from 1931 –2132 m section of an oil field respectively. The results prove that the particle swarm algorithm and the attention mechanism can effectively improve the prediction accuracy, and the inversion performance of this method is superior to that of the long short-term memory (LSTM) networks, the bi-directional LSTM networks, and the gated recurrent unit (GRU) networks in all aspects, meeting the needs of the real-time inversion of LWD data.
keywords: independent recurrent neural network attention mechanism particle swarm optimization algorithm logging while drilling (LWD) real-time inversion
文章编号: 中图分类号: 文献标志码:
基金项目:中石油重大科技专项(ZD2019-183-006); 中央高校基础科研业务专项(20CX05017A)
引用文本:
付俊芃,孙歧峰,陈沛沛,王亚宁.融合IndRNN和PSO的随钻测井数据反演方法.计算机系统应用,2024,33(2):33-42
FU Jun-Peng,SUN Qi-Feng,CHEN Pei-Pei,WANG Ya-Ning.Inversion Method of While Drilling Logging Data Integrating IndRNN and PSO.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):33-42
付俊芃,孙歧峰,陈沛沛,王亚宁.融合IndRNN和PSO的随钻测井数据反演方法.计算机系统应用,2024,33(2):33-42
FU Jun-Peng,SUN Qi-Feng,CHEN Pei-Pei,WANG Ya-Ning.Inversion Method of While Drilling Logging Data Integrating IndRNN and PSO.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):33-42