###
计算机系统应用英文版:2024,33(2):176-187
本文二维码信息
码上扫一扫!
融合多层次浅层信息的航拍小目标检测
(1.湖北汽车工业学院 汽车工程学院, 十堰 442002;2.中南民族大学 计算机科学学院, 武汉 430074)
Small Target Detection for Aerial Photography Fusing Multi-layer Shallow Information
(1.Information School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;2.College of Computer Science, South-central Minzu University, Wuhan 430074, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 515次   下载 1164
Received:May 27, 2023    Revised:June 26, 2023
中文摘要: 针对小目标检测及目标被遮挡的问题, 本文基于VisDrone2019数据集构建相应交通场景, 提出一种小目标检测算法. 首先, 充分利用主干网络的浅层特征改善小目标漏检的问题, 通过在YOLOv7算法原有的网络结构上增加小目标检测层P2, 并在P2小目标检测层的模型上为特征融合网络添加多层次浅层信息融合模块, 从而提高算法小目标检测效果. 其次, 使用全局上下文模块构建目标与全局上下文的联系, 增强模型区分目标与背景的能力, 改善目标因遮挡而出现特征缺失情况下的被检测效果. 最后, 本文采用专为小目标设计的损失函数NWD代替基线模型中的CIoU损失函数, 从而解决了IoU本身及其扩展对微小物体的位置偏差非常敏感的问题. 实验表明, 改进后的YOLOv7模型在航拍小目标数据集VisDrone2019 (测试集和验证集)上面mAP.5:.95分别有2.3%和2.8%的提升, 取得了十分优异的检测效果.
Abstract:To solve the problem of small target detection and target occlusion, this study constructs corresponding traffic scenes based on the VisDrone2019 data set and proposes a small target detection algorithm. First, the shallow features of the backbone network are fully used to improve the problem of missing small targets. The small target detection layer P2 is added to the original network structure of the YOLOv7 algorithm, and a multi-level shallow information fusion module is added to the feature fusion network of the model of the small target detection layer P2, so as to improve the small target detection effect of the algorithm. Secondly, the global context module is used to build the connection between the target and the global context, enhance the ability of the model to distinguish between the target and the background, and improve the detection effect when the target is missing features due to occlusion. Finally, the CIoU loss function in the baseline model is replaced by NWD, a loss function specially designed for small targets in this study, so as to solve the problem that IoU itself and its extension are highly sensitive to the position deviation of small targets. Experiments show that the improved YOLOv7 model has improved by 2.3% and 2.8% respectively in the small target aerial photography data set VisDrone2019 (test set and validation set) with mAP.5:.95, achieving excellent detection results.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
秦云飞,崔晓龙,程林,樊继东.融合多层次浅层信息的航拍小目标检测.计算机系统应用,2024,33(2):176-187
QIN Yun-Fei,CUI Xiao-Long,CHENG Lin,FAN Ji-Dong.Small Target Detection for Aerial Photography Fusing Multi-layer Shallow Information.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):176-187