本文已被:浏览 373次 下载 1097次
Received:July 20, 2023 Revised:August 29, 2023
Received:July 20, 2023 Revised:August 29, 2023
中文摘要: 为了提高特征融合, 我们设计了动态全连接层(DyFC), 该方法重新定义了权重和偏置, 使用基向量来代表新的权重和偏置, 基向量的系数是根据每一个输入特征进行学习得到的, 权重和偏置不再是共享的, 而是特有的, 这对于每一个特征的表达更具有专向性. 在本文中, 我们提出了一种双流映射结构模型IUINet. IUINet是通过3DShift操作、空间可分离卷积的组合来实现医学图像分割任务, 同时保持精度和效率之间的平衡. 所提出来的IUINet遵循编码器-解码器结构, 其中编码器一部分包含Shift操作、逐点Conv1×1操作, 另一部分包含空间可分离卷积操作. IUINet运用了多尺度输入以及多尺度特征映射层, 提高反向传播速度, 降低反向传播的平均距离. 提高模型的精确度, 增加模型泛化能力, 减少过拟合.
Abstract:This study designs the dynamic fully connected layer (DyFC) to enhance the feature fusion, which redefines the weights and biases by adopting base vectors to represent the new weights and biases. The coefficients of the base vectors are learned based on each input feature, and the weights and biases are no longer shared but unique, which provides more directional expressiveness for each feature. In this study, a dual-stream mapping architecture model IUINet is proposed. IUINet combines the 3DShift operation and spatial separable convolution to achieve medical image segmentation tasks and maintain a balance between accuracy and efficiency. The proposed IUINet follows an encoder-decoder structure, where the encoder consists of two parts. One part includes the Shift operation and pointwise Conv1×1 operation, and the other part incorporates spatial separable convolution operation. IUINet utilizes multi-scale inputs and multi-scale feature mapping layers to improve the backpropagation speed and reduce the average backpropagation distance. Finally, this enhances the model accuracy, improves generalization ability, and reduces overfitting.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61702135, 61806107)
引用文本:
朱庚鑫,程远志,刘豪.IUINet: 基于Shift的双流映射3D医学分割模型.计算机系统应用,2024,33(1):141-147
ZHU Geng-Xin,CHENG Yuan-Zhi,LIU Hao.IUINet: Two-flow Mapping 3D Medical Segmentation Model Based on Shift.COMPUTER SYSTEMS APPLICATIONS,2024,33(1):141-147
朱庚鑫,程远志,刘豪.IUINet: 基于Shift的双流映射3D医学分割模型.计算机系统应用,2024,33(1):141-147
ZHU Geng-Xin,CHENG Yuan-Zhi,LIU Hao.IUINet: Two-flow Mapping 3D Medical Segmentation Model Based on Shift.COMPUTER SYSTEMS APPLICATIONS,2024,33(1):141-147