###
计算机系统应用英文版:2024,33(1):213-218
本文二维码信息
码上扫一扫!
基于Delaunay三角网的克里金并行算法优化
(中国石油大学(华东) 计算科学与技术学院, 青岛 266580)
Optimization of Kriging Parallel Algorithm Based on Delaunay Triangulation Network
(College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 398次   下载 1197
Received:June 23, 2023    Revised:August 08, 2023
中文摘要: 当采样点数据量较大时, 可以采用Delaunay三角剖分建立三角网来使用局部邻域采样点进行克里金插值. 但是该算法需要对每个插值点拟合半变异函数, 插值点规模大时造成巨大开销. 为此, 本文提出了一种以三角形为单位拟合半变异函数的克里金插值方法, 采用CPU-GPU负载均衡将部分计算优化, 充分考虑不均匀样本对克里金插值效果的影响. 结果表明, 本文算法能够保证不均匀样本集的插值效果, 提升了计算性能且能够保证较高的精度.
Abstract:Under a large data amount of sampling points, Delaunay triangulation can be adopted to establish a triangulation network and then employ local neighborhood sampling points for Kriging interpolation. However, this algorithm requires fitting a semi-variogram to each interpolation point, which incurs significant overhead in the condition of a large interpolation point scale. Therefore, this study proposes a Kriging interpolation method that fits the semi-variogram on a triangular basis. Additionally, it utilizes CPU-GPU load balancing to optimize some calculations and fully considers the influence of non-uniform samples on the Kriging interpolation effect. The results show that the proposed algorithm can ensure the interpolation effect of non-uniform sample sets, improve computational performance, and ensure high accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈国军,李子祥,付云鹏,李震烁.基于Delaunay三角网的克里金并行算法优化.计算机系统应用,2024,33(1):213-218
CHEN Guo-Jun,LI Zi-Xiang,FU Yun-Peng,LI Zhen-Shuo.Optimization of Kriging Parallel Algorithm Based on Delaunay Triangulation Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(1):213-218