###
计算机系统应用英文版:2023,32(12):21-31
本文二维码信息
码上扫一扫!
利用多维评分进行在线评论的有用性预测
(四川大学 计算机学院, 成都 610065)
Helpfulness Prediction of Online Reviews Using Multidimensional Ratings
(College of Computer Science, Sichuan University, Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 581次   下载 1647
Received:June 16, 2023    Revised:July 19, 2023
中文摘要: 在线评论的有用性预测任务在当前的电子商务领域中发挥着重要的作用, 该任务的目标是判断在线评论的有用性, 进而重点展示对未来消费者更有帮助的评论, 提高消费者获取信息的效率. 在本文中, 我们重点关注近年来在各大在线平台兴起的一种新的评分系统——多维评分系统, 尝试研究用户在该系统中给出的方面评分对在线评论有用性的影响. 本文提出了一个综合考虑了评论文本、用户总体评分和方面评分3种元素及其交互的多层次神经网络模型HORA来完成有用性预测任务. 通过在两个真实世界的数据集上进行的实验结果表明, 与当前的基线模型相比, HORA在MAERMSE两个指标上展示了更好的结果, 同时在实验中也表现出了良好的鲁棒性, 表明了方面评分对用户的在线评论有用性感知的重要意义.
Abstract:Helpfulness prediction task of online reviews is significant in the contemporary e-commerce environment. It aims to evaluate the helpfulness of online reviews and then highlight the reviews more helpful to future consumers, thereby improving the consumers’ efficiency in obtaining information. This study concentrates on the new multidimensional scoring system emerging on various online platforms in recent years, and tries to study the influence of aspect ratings given by users in the system on the helpfulness of online reviews. To accomplish the helpfulness prediction task, it puts forward a multi-level neural network model HORA that considers all three components of review texts, overall ratings, and aspect ratings, as well as their interconnections. The experimental results on two real-world datasets show that HORA outperforms the present baseline models in terms of MAE and RMSE and exhibits good robustness. This indicates the significance of aspect ratings for the helpfulness awareness of users’ online reviews.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
吴健健,李文畅,时宏伟.利用多维评分进行在线评论的有用性预测.计算机系统应用,2023,32(12):21-31
WU Jian-Jian,LI Wen-Chang,SHI Hong-Wei.Helpfulness Prediction of Online Reviews Using Multidimensional Ratings.COMPUTER SYSTEMS APPLICATIONS,2023,32(12):21-31