###
计算机系统应用英文版:2023,32(12):95-103
本文二维码信息
码上扫一扫!
基于改进TD3的MEC多任务计算卸载
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049)
Multi-task Computation Offloading for MEC Based on Improved TD3
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 576次   下载 1427
Received:June 12, 2023    Revised:July 12, 2023
中文摘要: 在多用户多任务场景下, 使用传统的决策算法去对短时间内接踵而来的任务进行计算卸载决策, 已经不能满足用户对决策效率和资源利用率的要求. 因此有研究提出使用深度强化学习算法来进行卸载决策以满足各种场景下的需求, 但是这些算法大多只考虑卸载优先的策略, 这种策略使用户设备(UE)被大量闲置. 我们提高了移动边缘计算(MEC)服务器和用户设备(UE)的资源利用率, 降低计算卸载的错误率, 提出了一种本地优先和改进TD3(twin delayed deep deterministic policy gradient)算法相结合的决策卸载模型, 并设计了仿真实验, 通过实验证明该模型确实可以提高MEC服务器和UE的资源利用率并降低错误率.
Abstract:In multi-user and multi-task scenarios, using traditional decision algorithms to make computation offloading decisions for upcoming tasks in a short period can no longer meet users’ requirements for decision-making efficiency and resource utilization. Therefore, some studies have proposed deep reinforcement learning algorithms for offloading decisions to cater to various scenarios. However, most of these algorithms only consider the offloading first strategy, which leaves user equipment (UE) idle. This study improves the resource utilization of mobile edge computing (MEC) servers and UE and reduces the error rate of computation offloading. It proposes a decision offloading model combining local first and improved twin delayed deep deterministic policy gradient (TD3) algorithm and designs a simulation experiment. The experimental results show that the model can indeed improve the resource utilization of MEC servers and UE and reduce the error rate.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
于波,毛鑫浩.基于改进TD3的MEC多任务计算卸载.计算机系统应用,2023,32(12):95-103
YU Bo,MAO Xin-Hao.Multi-task Computation Offloading for MEC Based on Improved TD3.COMPUTER SYSTEMS APPLICATIONS,2023,32(12):95-103