###
计算机系统应用英文版:2023,32(12):284-291
本文二维码信息
码上扫一扫!
基于时空图的行人轨迹预测
(南京航空航天大学 计算机科学与技术学院, 南京 211106)
Pedestrian Trajectory Prediction Based on Spatio-temporal Graph
(College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 559次   下载 1375
Received:June 11, 2023    Revised:July 12, 2023
中文摘要: 在蓬勃发展的自动驾驶技术中, 行人轨迹预测的结果往往会影响到自动驾驶的安全性. 行人轨迹预测技术目前面临着在实际场景中应用时与他人的交互问题, 需要在预测轨迹的同时考虑社会交互性与逻辑自洽. 因此, 提出了一种基于时空图的行人轨迹预测方法, 该方法采用图注意力网络对场景中的行人交互进行建模, 并使用一种自动生成正负样本的方法来通过对比学习降低输出轨迹的碰撞率, 达到了提高输出轨迹的安全性以及逻辑自洽的效果. 在ETH和UCY数据集上进行模型训练与测试, 结果分析表明, 本文提出的方法有效降低了碰撞率, 且预测准确度优于主流算法.
Abstract:In the booming autonomous driving technology, the results of pedestrian trajectory prediction often affect autonomous driving safety. Pedestrian trajectory prediction technology currently faces the problem of interaction with others when applied to practical scenarios, requiring consideration of social interaction and logical consistency during predicting trajectories. Therefore, this study proposes a pedestrian trajectory prediction method based on spatio-temporal graphs. This method employs graph attention networks to model pedestrian interactions in the scenarios and adopts a method of automatically generating positive and negative samples to reduce the collision rate of the output trajectory through contrastive learning, thus improving the safety and logical consistency of the output trajectory. Model training and testing are conducted on ETH and UCY datasets, and the results show that the proposed method reduces the collision rate and has better prediction accuracy than mainstream algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:国防基础科研项目(JCKY2022605C006)
引用文本:
朱鹏飞,张德平.基于时空图的行人轨迹预测.计算机系统应用,2023,32(12):284-291
ZHU Peng-Fei,ZHANG De-Ping.Pedestrian Trajectory Prediction Based on Spatio-temporal Graph.COMPUTER SYSTEMS APPLICATIONS,2023,32(12):284-291