本文已被:浏览 444次 下载 1381次
Received:April 07, 2023 Revised:May 11, 2023
Received:April 07, 2023 Revised:May 11, 2023
中文摘要: 金属表面缺陷待测样本往往存在分辨率低、缺陷边界模糊、缺陷密集、缺陷目标小的情况, 同时, 构建的检测模型存在大量的超参数需要手动调参, 缺乏模型自适应调参能力, 本文提出一种基于贝叶斯优化的表面缺陷超分辨率检测算法. 通过设计精细化分层结构, 丰富主干网络特征图的感受野, 增强对高低频信息的提取, 重建出边缘纹理清晰的高分辨率图像; 通过构建瓶颈残差密集结构, 丰富主干特征提取网络的浅层特征和深层特征, 提升模型对小目标和密集目标的分类和定位能力; 通过贝叶斯优化算法以较小的时间代价自适应优化检测模型的关键超参数. 实验表明, 本文对NEU-DET数据集中6类金属表面缺陷的mAP0.5可达0.782, 同时检测速度可达102 f/s, 优于其他检测算法.
Abstract:The samples to be tested for metal surface defects are often characterized by low resolution, fuzzy defect boundaries, dense defects, and small defect targets. At the same time, the constructed detection model has a large number of hyperparameters that need to be manually adjusted and lacks the adaptive parameter adjustment ability. In this study, a surface defect super-resolution detection algorithm based on Bayesian optimization is proposed. Through the design of fine layered structure, the receptive field of the backbone network feature map is enriched; the extraction of high-low frequency information is enhanced; the high-resolution image with clear edge texture is reconstructed. By constructing the bottleneck residual dense structure, the shallow and deep features of the backbone feature extraction network are enriched, and the classification ability and the localization ability of the model for small targets and dense targets are improved. The key hyperparameters of the detection model are optimized adaptively by a Bayesian optimization algorithm with low time cost. Experiments show that mAP0.5 for six types of metal surface defects in the NEU-DET dataset can reach 0.782, and the detection speed can reach 102 f/s, which is superior to other detection algorithms.
keywords: defect detection super-resolution bottleneck residual dense block Bayesian self-optimization strategy
文章编号: 中图分类号: 文献标志码:
基金项目:山西省基础研究计划(20210302123216); 山西省机械产品质量司法鉴定中心企业委托项目(2021168); 山西省研究生教育改革研究课题(2021YJJG244); 太原科技大学研究生联合培养示范基地项目(JD2022004); 太原科技大学研究生教育创新项目(SY2022064)
引用文本:
张睿,任文宇,傅留虎.贝叶斯优化的表面缺陷超分辨率检测.计算机系统应用,2023,32(11):193-202
ZHANG Rui,REN Wen-Yu,FU Liu-Hu.Surface Defect Super-resolution Detection Based on Bayesian Optimization.COMPUTER SYSTEMS APPLICATIONS,2023,32(11):193-202
张睿,任文宇,傅留虎.贝叶斯优化的表面缺陷超分辨率检测.计算机系统应用,2023,32(11):193-202
ZHANG Rui,REN Wen-Yu,FU Liu-Hu.Surface Defect Super-resolution Detection Based on Bayesian Optimization.COMPUTER SYSTEMS APPLICATIONS,2023,32(11):193-202