###
计算机系统应用英文版:2023,32(10):192-200
本文二维码信息
码上扫一扫!
改进海洋捕食者算法及其在WRSN充电规划中的应用
(重庆工商大学 计算机科学与信息工程学院, 重庆 400067)
Improved Marine Predator Algorithm and Its Application in WRSN Charging Planning
(School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 476次   下载 1208
Received:March 18, 2023    Revised:April 20, 2023
中文摘要: 针对无线可充电传感器网络下的多无人机充电规划, 仅考虑无人机的飞行距离为成本目标规划出最优充电路径显得单一片面, 现把无人机的飞行距离、能量消耗、时间成本和无人机搭配成本组合成新的成本目标模型, 为了减少飞行停留点次数, 还加入了正六边形充电模型, 并提出了一种改进的海洋捕食者算法(BMPA)应用到此场景中. 改进之处在于: 一方面, 在海洋捕食者算法中引入了天牛须搜索算法寻找全局气味值最大的点的操作, 改善了最优解的质量; 另一方面, 在海洋捕食者算法中加入了新的自适应的非线性移动步长的参数, 进一步改善勘探与开发的平衡, 提高了全局搜索能力, 促进局部研究的快速收敛. 仿真实验结果表明, 提出的算法不仅有效地减少了飞行次数, 而且降低了飞行距离和算力消耗, 与BAS、MPA和PreWBAS算法相比, 在求解新的成本目标函数值上减少了50.90%、4.85%和14.38%, 证明了改进后的算法的有效性.
Abstract:For the multi-UAV charging planning under the wireless rechargeable sensor network, only considering the flight distance of the UAV to plan the optimal charging path for the cost target is single one-sided. Now the UAV flight distance, energy consumption, time cost, and UAV matching cost are combined into a new cost target model. To reduce the number of flight stops, a regular hexagonal charging model is also added, and an improved marine predator algorithm (BMPA) is proposed to be applied to this scenario. The improvement is as follows. On one hand, beetle antennae search algorithm is introduced into the marine predator algorithm to find the point with the largest odor value, which improves the optimal solution quality. On the other hand, a new adaptive nonlinear moving step parameter is added to the marine predator algorithm. As a result, the balance of exploration and development, and the global search ability are improved, and the rapid convergence of local research is promoted. The simulation results show that the proposed algorithm not only effectively reduces the number of flights, but also decreases the flight distance and computing power consumption. In addition, the new cost objective function values are reduced by 50.90%, 4.85%, and 14.38% compared with BAS, MPA, and PreWBAS algorithms, which proves the effectiveness of the improved algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:重庆市教委科技项目(KJZD-M202200801, KJQN201900839); 重庆市教育科学规划课题(2018-GX-023); 重庆市教改项目(213202); 重庆工商大学研究生教改项目(2021YJG0208); 重庆工商大学研究生课程思政建设项目([2022]56)
引用文本:
王俊杰,李明,蔡必文.改进海洋捕食者算法及其在WRSN充电规划中的应用.计算机系统应用,2023,32(10):192-200
WANG Jun-Jie,LI Ming,CAI Bi-Wen.Improved Marine Predator Algorithm and Its Application in WRSN Charging Planning.COMPUTER SYSTEMS APPLICATIONS,2023,32(10):192-200