###
计算机系统应用英文版:2023,32(9):162-168
本文二维码信息
码上扫一扫!
结合Bootstrapped探索方法的CCLF算法
(华南师范大学 软件学院, 佛山 528225)
CCLF Algorithm with Bootstrapped Exploration
(School of Software, South China Normal University, Foshan 528225, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 518次   下载 1184
Received:March 02, 2023    Revised:April 04, 2023
中文摘要: 深度强化学习因其可用于从高维的图像中提取出有效信息, 从而可以自动生成解决各类复杂任务的有效策略, 如游戏 AI, 机器人控制和自动驾驶等. 然而, 由于任务环境的复杂性以及智能体低下的探索效率, 使得即使执行相对简单的任务, 智能体仍需要与环境进行大量交互. 因此, 本文提出一种结合Bootstrapped探索方法的CCLF算法—Bootstrapped CCLF, 该算法通过actor网络中多个head来产生更多不同的潜在动作, 从而能够访问到更多不同的状态, 提高智能体的探索效率, 进而加快收敛过程. 实验结果表明, 该算法在DeepMind Control环境中具有比原算法更好的性能以及稳定性, 证明了该算法的有效性.
Abstract:Deep reinforcement learning can be used to extract effective information from high-dimensional images and thus automatically generate effective strategies for solving complex tasks such as game AI, robot control, and autonomous driving. However, due to the complexity of the task environment and the low exploration efficiency of the agent, it is still necessary for the agent to interact with the environment frequently even for relatively simple tasks. Therefore, this study proposes a CCLF algorithm (Bootstrapped CCLF), which combines Bootstrapped exploration method to generate more different potential actions through multiple heads in the actor network, so that more different states can be accessed to improve the exploration efficiency of the agent, and thus the convergence process can be accelerated. The experimental results show that the algorithm has better performance and stability than the original algorithm in the DeepMind Control environment, which proves the effectiveness of the algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省自然科学基金面上项目(2023A1515011472)
引用文本:
杜志斌,黄银豪.结合Bootstrapped探索方法的CCLF算法.计算机系统应用,2023,32(9):162-168
DU Zhi-Bin,HUANG Yin-Hao.CCLF Algorithm with Bootstrapped Exploration.COMPUTER SYSTEMS APPLICATIONS,2023,32(9):162-168