本文已被:浏览 536次 下载 1613次
Received:February 20, 2023 Revised:March 22, 2023
Received:February 20, 2023 Revised:March 22, 2023
中文摘要: 在前人工作的基础上, 提出句法依存引导的自注意力机制以融合句法依存知识去提升中文分词的性能, 使得自注意力机制只关注那些对当前字符的分词标签有句法依存影响的字符, 学习它们对于当前字符的影响程度, 另外, 该文根据句法依存树对引导后的自注意力机制进行位置编码. 实验结果表明, 模型相较于baseline取得了性能上的提升, 同时模型对未登录词的识别能力也有所提升.
Abstract:Based on previous work, this study proposes that the self-attention mechanism guided by syntactic dependency can integrate syntactic dependency knowledge to improve the performance of Chinese word segmentation so that the self-attention mechanism can only focus on those characters that have syntactic dependency influence on the current character’s word segmentation label and learn their influence degree on the current character. In addition, this study performs positional encoding on the self-attention mechanism guided by syntactic dependency trees. The experimental results show that the model has improved its performance compared with the baseline, and the recognition ability of the model for unregistered words has been strengthened.
keywords: syntactic dependence positional encoding self-attention mechanisms Chinese word segmentation
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
ZHOU Bao-Tu | GuoChuang Cloud Technology Co. Ltd., Hefei 230088, China | zhoubaotu1323@163.com |
Author Name | Affiliation | |
ZHOU Bao-Tu | GuoChuang Cloud Technology Co. Ltd., Hefei 230088, China | zhoubaotu1323@163.com |
引用文本:
周保途.句法依存引导的自注意力机制的中文分词.计算机系统应用,2023,32(9):265-271
ZHOU Bao-Tu.Chinese Word Segmentation of Self-attention Mechanisms Guided by Syntactic Dependence.COMPUTER SYSTEMS APPLICATIONS,2023,32(9):265-271
周保途.句法依存引导的自注意力机制的中文分词.计算机系统应用,2023,32(9):265-271
ZHOU Bao-Tu.Chinese Word Segmentation of Self-attention Mechanisms Guided by Syntactic Dependence.COMPUTER SYSTEMS APPLICATIONS,2023,32(9):265-271