###
计算机系统应用英文版:2023,32(8):198-206
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于FMCW雷达的多人心率呼吸检测
(西安理工大学 自动化与信息工程学院, 西安 710048)
Multiperson Heart Rate and Respiratory Detection Based on FMCW Radar
(School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 725次   下载 2165
Received:February 06, 2023    Revised:March 14, 2023
中文摘要: 针对目前毫米波雷达应用于多人生命体征检测效果不佳, 检测范围小等缺点, 提出了一种多人心率呼吸提取分离方法, 首先采用Capon波束成形技术对非目标区域信号形成零陷, 对目标区域进行提取相位、相位解缠绕操作; 其次利用自适应谐波跟踪算法滤除噪声; 最后使用粒子群算法和样本熵改进的变分模态分解法(PSO-SE-VMD)对信号进行分解得到模态分量, 选取合适的模态分量并通过短时自相关算法提取心率呼吸. 实验结果表明, 该方法在夹角30°和60°时心率的均方误差分别为5.55和3.15, 实现了多人检测并有效提高了检测范围.
Abstract:The current millimeter-wave radar has a poor detection effect and small detection range when applied to detect multi-person vital signs. In view of these problems, a method for extracting and separating multi-person heart rate and respiration is proposed. First, Capon beam forming technology is used to form null for signals in non-target areas, and phase extraction and phase unwrapping operations are carried out for target areas. Secondly, an adaptive harmonic tracking algorithm is used to filter noise. Finally, the variational mode decomposition method improved by particle swarm optimization and sample entropy (PSO-SE-VMD) is used to decompose the signal to obtain modal components, select appropriate modal components, and extract heart rate and respiration through a short-term autocorrelation algorithm. The experimental results show that the mean square error of heart rate is 5.55 and 3.15 when the included angle is 30° and 60°, respectively, which realizes multi-person detection and effectively improves the detection range.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省教育厅科研计划(18JK0341)
引用文本:
李牧,杨恒,张一朗.基于FMCW雷达的多人心率呼吸检测.计算机系统应用,2023,32(8):198-206
LI Mu,YANG Heng,ZHANG Yi-Lang.Multiperson Heart Rate and Respiratory Detection Based on FMCW Radar.COMPUTER SYSTEMS APPLICATIONS,2023,32(8):198-206