码上扫一扫!
轻量化自监督单目深度估计
刘佳1,2,3,4,
林潇1,2,3,4,
陈大鹏1,2,3,4,
徐闯1,2,3,4,
石豪1,2,3,4
(1.南京信息工程大学 自动化学院, 南京 210044;2.江苏省智能气象探测机器人工程研究中心, 南京 210044;3.江苏省大数据分析技术重点实验室, 南京 210044;4.江苏省大气环境与装备技术协同创新中心, 南京 210044)
Lightweight Self-supervised Monocular Depth Estimation
LIU Jia1,2,3,4,
LIN Xiao1,2,3,4,
CHEN Da-Peng1,2,3,4,
XU Chuang1,2,3,4,
SHI Hao1,2,3,4
(1.School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China;3.Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China;4.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China)
本文已被:浏览 608次 下载 1890次
Received:February 03, 2023 Revised:March 01, 2023
中文摘要: 目前, 大多数的增强现实和自动驾驶应用不仅会使用到深度网络估计的深度信息, 还会使用到位姿网络估计的位姿信息. 将位姿网络和深度网络同时集成到嵌入式设备上, 会极大地消耗内存. 为解决这一问题, 提出一种深度网络和位姿网络共用特征提取器的方法, 使模型保持在一个轻量级的尺寸. 此外, 通过带有线性结构的深度可分离卷积轻量化深度网络, 使网络在不丢失过多细节信息前提下还可获得更少的参数量. 最后, 通过在KITTI数据集上的实验表明, 与同类算法相比, 该位姿网络和深度网络参数量只有的 35.33 MB. 同时, 恢复深度图的平均绝对误差也保持在0.129.
Abstract:Currently, most augmented reality and autonomous driving applications use not only the depth information estimated by the depth network but also the pose information estimated by the pose network. Integrating both the pose network and the depth network into an embedded device can be extremely memory-consuming. In view of this problem, a method of the depth and pose networks sharing feature extractors is proposed to keep the model at a lightweight size. In addition, the depth-separable convolutional lightweight depth network with linear structure allows the network to obtain fewer parameters without losing too much detailed information. Finally, experiments on the KITTI dataset show that compared with the algorithms of the same type, the size of the pose and deep network parameters is only 35.33 MB. At the same time, the average absolute error of the restored depth map is also maintained at 0.129.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61773219, 62003169); 江苏产业前瞻与关键技术重点项目(BE2020006-2); 江苏省自然科学基金青年基金(BK20200823)
Author Name | Affiliation | E-mail |
LIU Jia | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
LIN Xiao | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
CHEN Da-Peng | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | dpchen@nuist.edu.cn |
XU Chuang | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
SHI Hao | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
Author Name | Affiliation | E-mail |
LIU Jia | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
LIN Xiao | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
CHEN Da-Peng | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | dpchen@nuist.edu.cn |
XU Chuang | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
SHI Hao | School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China Jiangsu Province Engineering Research Center of Intelligent Meteorological Exploration Robot, Nanjing 210044, China Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China | |
引用文本:
刘佳,林潇,陈大鹏,徐闯,石豪.轻量化自监督单目深度估计.计算机系统应用,2023,32(8):116-125
LIU Jia,LIN Xiao,CHEN Da-Peng,XU Chuang,SHI Hao.Lightweight Self-supervised Monocular Depth Estimation.COMPUTER SYSTEMS APPLICATIONS,2023,32(8):116-125