###
计算机系统应用英文版:2023,32(9):97-105
本文二维码信息
码上扫一扫!
改进YOLOv5s的自动驾驶汽车目标检测
(西南交通大学 计算机与人工智能学院, 成都 611756)
Improved YOLOv5s for Autonomous Vehicle Target Detection
(School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 818次   下载 1844
Received:February 12, 2023    Revised:March 08, 2023
中文摘要: 在自动驾驶领域, 由于道路背景复杂以及小目标信息缺失, 现有目标检测算法存在检测精度低的问题. 由于车载摄像头视角较为固定, 道路上的目标在图像空间中的分布具有一定的规律, 可以为自动驾驶汽车进行目标检测提供更为丰富的信息. 因此, 提出一种改进YOLOv5s的空间特征增强网络(SE-YOLOv5s). 在YOLOv5s的颈部网络中添加位置注意力模块(location attention module, LAM), 该模块能够根据道路目标在图像中的分布特征进行加权, 增强网络对目标类别位置分布的感知和定位能力. 设计一种小目标增强模块(small target enhancement module, STEM), 将浅层特征和深层特征进行融合, 可以获得更丰富的小目标语义信息和空间细节信息, 提高小目标检测效果. 实验结果表明, 改进模型对不同尺度目标检测精度均有所提高, APS提高2.8%, APM提高2.5%, APL提高2%.
中文关键词: 目标检测  注意力机制  小目标  YOLOv5
Abstract:In the field of automatic driving, existing target detection algorithms are haunted by low detection precision due to complicated road backgrounds and insufficient information about small targets. Since the onboard camera has fixed viewing angles, and targets on the road are somewhat regularly distributed in the image space, richer information can be provided to autonomous vehicles for target detection. Therefore, a spatial feature augmentation network (SE-YOLOv5s) to improve YOLOv5s is proposed. A location attention module (LAM) is added to the neck network of YOLOv5s, which can be weighted according to the distribution characteristics of road targets in the image and enhance the network’s perception and localization ability for the target category location distribution. A small target enhancement module (STEM) is designed to fuse shallow features and deep ones, so as to obtain richer semantic information and detailed space information about small targets, thereby improving the detection effect of small targets. The results of the experiment show that the improved model witnesses an increase in detection precision against targets of different scales, with APS increased by 2.8%, APM increased by 2.5%, and APL increased by 2%.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61961038)
引用文本:
余以春,李明旭.改进YOLOv5s的自动驾驶汽车目标检测.计算机系统应用,2023,32(9):97-105
YU Yi-Chun,LI Ming-Xu.Improved YOLOv5s for Autonomous Vehicle Target Detection.COMPUTER SYSTEMS APPLICATIONS,2023,32(9):97-105