本文已被:浏览 579次 下载 1632次
Received:December 28, 2022 Revised:February 03, 2023
Received:December 28, 2022 Revised:February 03, 2023
中文摘要: 在斯隆数字巡天任务中, 受体积较大亮度较高的天体干扰, 现阶段的目标检测算法对小尺度天体的检测效果并不理想. 针对上述问题, 提出一种基于Mask-GAN和YOLOv3的小尺度天体检测方法. 方法分为两大步骤: 第1步干扰天体屏蔽. 首先设计了一个干扰天体Mask构建算法, 通过自适应阈值分割和连通域分析提取干扰目标, 并提出融合各波段区域特征和排除邻近目标方式构建Mask, 避免以往分割方法存在的光晕残留和邻近目标错误分割现象; 其次构建GAN模型, 结合干扰天体Mask完成屏蔽干扰任务. 第2步将处理过的数据输入改进的YOLOv3模型进行小尺度天体检测. 引入注意力机制, 构建C-EfficientNet作为主干特征提取网络, 加强网络的特征提取能力和对目标关注程度; 同时扩展4个有效特征层并提出一种提升浅层特征图权重的方式SAt, 让网络更好地利用分辨率高细节丰富的浅层特征来检测小尺度天体. 实验与分析表明, 在SDSS (Sloan digital sky survey)天文数据集上对小尺度恒星和星系的检测平均精度达到了81.16%和77.89%, 相比于当前经典算法检测效果更好, 有一定的实际应用意义.
Abstract:In the Sloan digital sky survey (SDSS), the current object detection algorithm is inefficient in the detection of small-scale astronomical objects due to interference from large and bright astronomical objects. To address this issue, a small-scale astronomical object detection method based on Mask-GAN and improved YOLOv3 is proposed. The method is executed in two steps. The first step is to mask the interfering astronomical objects. A Mask construction algorithm for interfering astronomical objects is designed, which extracts the interfering objects by adaptive threshold segmentation and connectivity domain analysis, and the Mask is constructed by the method of fusing the features of band regions to avoid halo residue and excluding adjacent objects to avoid segmentation errors. Then, a GAN model is built, which is combined with the Mask of interfering astronomical objects to complete the interference masking task. The second step is to input the processed data into the improved YOLOv3 model for small-scale astronomical object detection. C-EfficientNet with an attention mechanism is built as the backbone network of the improved YOLOv3 to strengthen the feature extraction capability and increase the network’s attention to objects. Meanwhile, four effective feature layers are extended, and the method SAt is proposed to increase the weight of shallow feature maps so that the network can better use high-resolution shallow features with more details to detect small-scale astronomical objects. Experiments and analysis show that the average accuracy of the method in detecting small-scale stars and galaxies on the SDSS astronomical dataset reaches 81.16% and 77.89%, respectively, The proposed detection method is better than the classic one and is of certain practical application significance.
keywords: astronomical image small-scale astronomical object masking interference generative adversarial network (GAN) object detection
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(U1931209)
引用文本:
院守晋,蔡江辉,杨海峰,郑爱宇.面向天文图像的小尺度天体检测.计算机系统应用,2023,32(7):95-104
YUAN Shou-Jin,CAI Jiang-Hui,YANG Hai-Feng,ZHENG Ai-Yu.Small-scale Astronomical Object Detection for Astronomical Images.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):95-104
院守晋,蔡江辉,杨海峰,郑爱宇.面向天文图像的小尺度天体检测.计算机系统应用,2023,32(7):95-104
YUAN Shou-Jin,CAI Jiang-Hui,YANG Hai-Feng,ZHENG Ai-Yu.Small-scale Astronomical Object Detection for Astronomical Images.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):95-104