###
计算机系统应用英文版:2023,32(8):171-179
本文二维码信息
码上扫一扫!
基于GRA-IWOA-ELM的航空煤油闪点值预测
(辽宁石油化工大学 信息与控制工程学院, 抚顺 113001)
Flash Point Prediction of Aviation Kerosene Based on GRA-IWOA-ELM
(School of Information and Control Engineering, Liaoning Shihua University, Fushun 113001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 545次   下载 1297
Received:January 11, 2023    Revised:February 09, 2023
中文摘要: 针对常一线航空煤油闪点值预测提出基于灰色关联分析法 (grey correlative analysis, GRA)与改进的鲸鱼优化算法(improved whale algorithm, IWOA)优化极限学习机 (extreme learning machine, ELM)的软测量方法. 利用GRA计算出各个辅助变量与待测变量的信息关联度, 通过实验法选取辅助变量作为输入, 然后利用IWOA为ELM寻找最优权阈值. 在算法迭代前期, 利用改进的Tent混沌映射进行种群初始化使种群分布更加均匀, 利用自适应权重结合随机差分变异策略来提升算法的寻优能力, 通过8个基准测试函数对改进算法的有效性进行验证. 通过某炼油厂常压塔常一线航空煤油闪点实际数据, 验证了改进模型对闪点值预测的有效性.
Abstract:In view of the flash point prediction of constant line aviation kerosene, a soft sensor method based on the grey correlation analysis (GRA) and improved whale optimization algorithm (IWOA) is proposed to optimize the extreme learning machine (ELM). GRA is used to calculate the information correlation degree between each auxiliary variable and the variable to be tested. Auxiliary variables are selected as inputs through the experimental method, and then IWOA is used to find the optimal weight threshold for ELM. In the early stage of the algorithm iteration, the improved Tent chaotic mapping is used to initialize the population to make the population distribution more uniform. The adaptive weight is combined with a random difference variation strategy to improve the optimization ability of the algorithm. The effectiveness of the improved algorithm is verified by eight benchmark test functions, and the improved model is proven to be effective in predicting flash points by the actual flash point data of the constant line aviation kerosene in an atmospheric tower of a refinery.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李奇安,李俊,曹迪,张铭.基于GRA-IWOA-ELM的航空煤油闪点值预测.计算机系统应用,2023,32(8):171-179
LI Qi-An,LI Jun,CAO Di,ZHANG Ming.Flash Point Prediction of Aviation Kerosene Based on GRA-IWOA-ELM.COMPUTER SYSTEMS APPLICATIONS,2023,32(8):171-179