###
计算机系统应用英文版:2023,32(6):241-250
本文二维码信息
码上扫一扫!
面向甲状旁腺检测的椭圆形高斯热图标签分配
(1.福州大学 计算机与大数据学院, 福州 350108;2.天津大学 智能与计算学部, 天津 300350;3.福建医科大学附属协和医院, 福州 350001)
Label Assignment of Ellipse Gaussian Heatmap for Parathyroid Detection
(1.College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China;2.College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;3.Fujian Medical University Union Hospital, Fuzhou 350001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 554次   下载 1101
Received:November 28, 2022    Revised:December 23, 2022
中文摘要: 近年来基于anchor-free的检测方法相继被提出, 它们采取将目标转化为关键点, 并在全局高斯热图中进行正负样本的标签分配. 这种标签分配策略在一些场景中存在正负样本不平衡的问题, 而且在甲状旁腺检测中不能有效反映目标的形状和方向. 因此, 本文提出了一种新的甲状旁腺检测模型EllipseNet, 首先在GT中构建椭圆形状的高斯分布, 拟合GT中的真正目标, 使得正负样本的分配更加细粒度; 同时提出融入目标形状信息的损失函数对目标的位置进行约束, 进一步提高检测的精度. 此外, 模型中构建了多尺度预测, 能够更好地检测不同大小的目标, 解决甲状旁腺检测中目标尺度不平衡的问题. 本文在甲状旁腺数据集上进行实验, 结果表明, EllipseNet的AP50达到95%, 相比多种主流的检测算法, 其检测精度有较大的提升.
Abstract:Anchor-free-based detection methods have been proposed successively in recent years, and they transform objects into key points and assign labels to positive and negative samples in the global Gaussian heatmap. This label assignment strategy suffers from positive and negative sample imbalance in some scenarios and cannot effectively reflect the shape and orientation of the object in parathyroid detection. Therefore, a new parathyroid detection model, namely, EllipseNet, is proposed in this study, which first constructs an elliptical Gaussian distribution in GT to fit the real object in GT, so as to make the assignment of positive and negative samples more fine-grained. Furthermore, a loss function incorporating the object shape information is proposed to constrain the position of the object, so as to improve the accuracy of detection. In addition, multi-scale prediction is constructed in the model, which can better detect objects of different sizes and solve the problem of target scale imbalance in parathyroid detection. In this study, experiments are conducted on the parathyroid dataset, and the results show that EllipseNet achieves an AP50 of 95%, which is a large improvement in detection accuracy compared with a variety of mainstream detection algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61771141); 福建省自然科学基金(2021J01620); 福建省科技创新联合资金(2018Y9015)
引用文本:
李宜剑,刘莞玲,陈飞,王波,赵文新.面向甲状旁腺检测的椭圆形高斯热图标签分配.计算机系统应用,2023,32(6):241-250
LI Yi-Jian,LIU Wan-Ling,CHEN Fei,WANG Bo,ZHAO Wen-Xin.Label Assignment of Ellipse Gaussian Heatmap for Parathyroid Detection.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):241-250