###
计算机系统应用英文版:2023,32(5):220-226
本文二维码信息
码上扫一扫!
基于GGIW-PMB的衍生扩展目标跟踪
(1.桂林电子科技大学 数学与计算科学学院, 桂林 541004;2.桂林电子科技大学 广西精密导航技术与应用重点实验室, 桂林 541004)
Spawning Extended Target Tracking Based on GGIW-PMB
(1.School of Mathematics & Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;2.Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 633次   下载 1373
Received:November 06, 2022    Revised:December 23, 2022
中文摘要: 针对标准的扩展目标泊松多伯努利(Poisson multi-Bernoulli, PMB)滤波器难以有效跟踪衍生目标的问题, 提出一种改进的PMB跟踪算法. 算法采用随机矩阵法对扩展目标外形和尺寸建模, 在滤波预测阶段利用多假设模型对衍生事件进行预测, 得到多个伽玛高斯逆威沙特 (gamma Gaussian inverse Wishart, GGIW)预测假设分量, 最后在滤波更新阶段对预测分量更新得到扩展目标的运动状态和扩展形状估计. 仿真结果表明, 与标准的PMB滤波算法相比, 所提算法有效改善衍生扩展目标的跟踪性能.
Abstract:The standard Poisson multi-Bernoulli (PMB) filter for extended targets can hardly track spawning targets effectively. To resolve this problem, this study proposes an improved PMB tracking algorithm. The algorithm uses a random matrix method to model shapes and dimensions of extended targets and adopts a multi-hypothesis model to predict spawning targets in the filtering prediction stage and obtain multiple hypothetical components of gamma Gaussian inverse Wishart (GGIW). Finally, it updates the predicted components in the filtering update stage to estimate the motion state and expansion shapes of extended targets. Simulations show that the proposed algorithm has better tracking performance for spawning extended targets in comparison with the standard PMB filtering algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62263007);桂林电子科技大学数学与计算科学学院研究生创新项目(2022YJSCX02)
引用文本:
吕晓燕,吴孙勇,蔡如华,郑翔飞,谢芸.基于GGIW-PMB的衍生扩展目标跟踪.计算机系统应用,2023,32(5):220-226
LYU Xiao-Yan,WU Sun-Yong,CAI Ru-Hua,ZHENG Xiang-Fei,XIE Yun.Spawning Extended Target Tracking Based on GGIW-PMB.COMPUTER SYSTEMS APPLICATIONS,2023,32(5):220-226