本文已被:浏览 573次 下载 1545次
Received:October 11, 2022 Revised:November 14, 2022
Received:October 11, 2022 Revised:November 14, 2022
中文摘要: 在阿尔兹海默症分类问题中, 超图神经网络可以从被试间的超图关系中提取特征, 在表示学习复杂图结构方面具有很好的优势, 但大多数模型都直接或间接地将超图所表示的被试间的高阶复杂关系分解, 转化为简单的二元关系进行特征学习, 没有有效利用超边的高阶信息, 因此提出了基于线-超图神经网络(line-hypergraph neural network, L-HGNN)的阿尔兹海默症分类模型, 该模型利用稀疏线性回归表征被试间多元相关性, 借助超图和线图的转换在神经网络模型中实现节点的高阶邻域信息传递和超边整体结构特征学习, 同时, 结合注意力机制生成更具区分性的节点嵌入, 进而用于阿尔兹海默症的辅助诊断. 在ADNI数据上与常用的两种方法比较, 实验结果表明, 该方法能有效提高分类准确率, 在阿尔兹海默症早期诊断上具有重要的应用价值.
Abstract:During the classification of Alzheimer’s disease, the hypergraph neural network (HGNN) can extract features from the hypergraph relationship between subjects, which has a good advantage in representing and learning the structure of complex graphs. However, most models directly or indirectly decompose the higher-order complex relationship between subjects represented by hypergraphs into the simple binary relationship for feature learning, without effectively using the higher-order information of hyperedges. Therefore, an Alzheimer’s disease classification model based on the line-hypergraph neural network (L-HGNN) is proposed. The model uses sparse linear regression to represent the multiple correlations between subjects. With the help of the transformation of hypergraphs and line graphs, the higher-order neighborhood information transmission of nodes and the learning of overall structural features of hyperedges are realized in convolutional network models. Meanwhile, a more differentiated node embedding is generated by the attention mechanism, which is then used in the auxiliary diagnosis of Alzheimer’s disease. Compared with the results of two commonly used methods on the ADNI dataset, the experimental results show that the proposed method can effectively improve the classification accuracy and has important application value in the early diagnosis of Alzheimer’s disease.
keywords: Alzheimer’s disease (AD) sparse linear regression hypergraph neural network (HGNN) higher-order complex relationship
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61876124)
引用文本:
宿亚静,李瑶,曹鹏杰,李埼钒,赵子康,郭浩.基于线-超图神经网络的阿尔兹海默症分类.计算机系统应用,2023,32(6):260-268
SU Ya-Jing,LI Yao,CAO Peng-Jie,LI Qi-Fan,ZHAO Zi-Kang,GUO Hao.Alzheimer’s Disease Classification Based on Line-hypergraph Neural Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):260-268
宿亚静,李瑶,曹鹏杰,李埼钒,赵子康,郭浩.基于线-超图神经网络的阿尔兹海默症分类.计算机系统应用,2023,32(6):260-268
SU Ya-Jing,LI Yao,CAO Peng-Jie,LI Qi-Fan,ZHAO Zi-Kang,GUO Hao.Alzheimer’s Disease Classification Based on Line-hypergraph Neural Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):260-268