本文已被:浏览 571次 下载 1650次
Received:August 22, 2022 Revised:October 21, 2022
Received:August 22, 2022 Revised:October 21, 2022
中文摘要: 肝癌仍然是世界癌症死亡的主要原因, 如今血管介入治疗是其主要的治疗方式, 同时肝脏血管影像在该过程中有着关键作用, 能够为专业的医生提供重要的参考价值. 但是通过人工来标注血管是复杂且耗时的任务, 因此实现自动肝脏血管分割对相关工作有着重大意义. 本文提出了注意力门控单元, 用于提高网络信息提取能力, 并将该单元与UNetR网络相结合, 提出一种新的网络结构——UNetR-AGM. 在对腹部CT的预处理上使用了均衡过滤策略, 不仅提高血管和周围组织的对比度, 而且能够对血管完成粗分割. 为了验证所提出方法有效性, 本文将UNetR-AGM与其他人员的研究方法在MSD (medical segmentation decathlon)数据集上进行对比, 并分析算法的准确性. 实验结果表明, 本文采用的方法与其他模型相比具有更好的效果.
Abstract:Liver cancer remains the main cause of cancer-induced death in the world. Nowadays, vascular interventional therapy is the main treatment method for liver cancer, and vascular imaging plays a key role in this process, providing important reference for professional doctors. However, manual labeling of blood vessels is a complex and time-consuming task, so the automatic segmentation of liver blood vessels is of great significance for related work. In this study, an attention gating unit is introduced to improve the extraction of network information, and a new network structure, UNetR-AGM, is proposed by combining this unit with the UNetR network. The balanced filtering strategy is used for pre-processing abdominal computed tomography (CT), which not only improves the contrast between blood vessels and surrounding tissues but also completes the rough segmentation of blood vessels. To verify the effectiveness of the proposed method, this study compares UNetR-AGM with other research methods on the medical segmentation decathlon (MSD) dataset and analyzes the accuracy of the algorithm. The experimental results show that the method developed in this study is more effective than other models.
keywords: liver cancer segmentation of liver blood vessels attention gating unit rough segmentation balanced filtering strategy
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61806107,61702135)
引用文本:
黄长见,程远志,史操.基于全局注意力机制的肝脏血管分割.计算机系统应用,2023,32(5):316-322
HUANG Chang-Jian,CHENG Yuan-Zhi,SHI Cao.Segmentation of Liver Blood Vessels Based on Global Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2023,32(5):316-322
黄长见,程远志,史操.基于全局注意力机制的肝脏血管分割.计算机系统应用,2023,32(5):316-322
HUANG Chang-Jian,CHENG Yuan-Zhi,SHI Cao.Segmentation of Liver Blood Vessels Based on Global Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2023,32(5):316-322