本文已被:浏览 699次 下载 1343次
Received:August 02, 2022 Revised:September 27, 2022
Received:August 02, 2022 Revised:September 27, 2022
中文摘要: 近年来, 由于人工智能在医疗领域的高速发展, 科研人员对医学图像的需求量与日俱增. 这些医学图像往往需要经过精细地标注之后才能够被投入使用. 与自然图像相比, 医学图像的数据标注工作更具专业性、复杂性. 因此, 医学图像面临着标注速率低、标注成本高等问题, 从而导致带标签样本稀缺的困境. 眼底图像作为一种重要的医学图像, 能够实现绝大多数的眼科疾病筛查与初诊工作, 如糖尿病视网膜病变、青光眼等, 但也同样面临着标注困难的问题. 针对这样的现状, 本文设计并开发了一种高效的眼底图像半自动标注系统, 该系统的创新点是能够对多种眼病进行半自动标注. 针对眼底图像进行多种疾病的预测, 预测结果的类型包括疾病分级和病灶分割, 标注人员只需对生成的预测结果进行审核并修改, 这一过程可以大大降低标注人员的工作量. 此外, 该系统包括用户管理、项目管理、图像管理、算法模型管理4个模块. 通过这4个模块可以实现团队标注中的任务分配, 标注进度数据可视化, 标注结果快速导出等人性化功能. 该系统极大提升了标注人员的标注效率和标注体验.
Abstract:In recent years, due to the rapid development of artificial intelligence in the medical field, the demand for medical images from researchers has been increasing day by day. These medical images often need to be finely annotated before being put into use. Compared with natural images, the data annotation of medical images is more specialized and complex. Therefore, medical images face the problems of low annotation rate and high annotation cost, resulting in the scarcity of labeled samples. Fundus images, as an important medical image, can achieve the screening and primary diagnosis of most ophthalmic diseases such as diabetic retinopathy and glaucoma, but they also face some difficulty in annotation. To address this situation, this study designs and develops an efficient semi-automated annotation system for fundus images, which is innovative in that it can perform semi-automated annotation of multiple eye diseases. Various diseases are predicted based on the fundus images, and the types of prediction results include disease classification and lesion segmentation. The annotator only needs to review and modify the generated prediction results, and this process can greatly reduce the workload of the annotator. In addition, the system includes four modules: user management, project management, image management, and algorithm model management. These four modules enable task assignment in team annotation, visualization of annotation progress data, quick export of annotation results, and other user-friendly functions. The system greatly improves the annotation efficiency and experience of annotators.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(62172101); 上海市科学技术委员会“科技创新行动计划” (21XD1402500, 20DZ1100205, 19DZ2250100)
引用文本:
章慧丰,侯君临,邹海东,陆丽娜,冯瑞.眼底图像半自动标注系统.计算机系统应用,2023,32(7):65-74
ZHANG Hui-Feng,HOU Jun-Lin,ZOU Hai-Dong,LU Li-Na,FENG Rui.Semi-automated Annotation System for Fundus Image.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):65-74
章慧丰,侯君临,邹海东,陆丽娜,冯瑞.眼底图像半自动标注系统.计算机系统应用,2023,32(7):65-74
ZHANG Hui-Feng,HOU Jun-Lin,ZOU Hai-Dong,LU Li-Na,FENG Rui.Semi-automated Annotation System for Fundus Image.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):65-74