###
计算机系统应用英文版:2023,32(4):42-51
本文二维码信息
码上扫一扫!
基于串行编码校验的深度哈希图像检索
(1.华南师范大学 软件学院, 佛山 528225;2.季华实验室 新型显示技术与装备研究中心, 佛山 528200)
Deep Hashing Image Retrieval Based on Serial Code Check
(1.School of Software, South China Normal University, Foshan 528225, China;2.New Display Technology and Equipment Center, Ji Hua Laboratory, Foshan 528200, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 543次   下载 1843
Received:September 16, 2022    Revised:October 21, 2022
中文摘要: 现有基于深度学习的哈希图像检索方法通常使用全连接作为哈希编码层, 并行输出每一位哈希编码, 这种方法将哈希编码都视为图像的信息编码, 忽略了编码过程中哈希码各个比特位之间的关联性与整段编码的冗余性, 导致网络编码性能受限. 因此, 本文基于编码校验的原理, 提出了串行哈希编码的深度哈希方法——串行哈希编码网络 (serial hashing network, SHNet). 与传统的哈希编码方法不同, SHNet将哈希编码网络层结构设计为串行方式, 在生成哈希码过程中对串行生成的前部分哈希编码进行校验, 从而充分利用编码的关联性与冗余性生成信息量更为丰富、更加紧凑、判别力更强的哈希码. 采用mAP作为检索性能评价标准, 将本文所提方法与目前主流哈希方法进行比较, 实验结果表明本文在不同哈希编码长度下的mAP值在3个数据集CIFAR-10、ImageNet、NUS-WIDE上都优于目前主流深度哈希算法, 证明了其有效性.
Abstract:Existing deep learning-based hashing methods for image retrieval usually cascade several fully connected layers as the hash coding layer and output each bit of the hash code in parallel. This approach treats hash encoding as the information encoding of images and ignores the relevance between bits of the hash code in the coding process and the redundancy of coding, which leads to the limited encoding performance of networks. In light of the principle of code check, this study proposes SHNet, a deep hashing method based on serial encoding. Different from the traditional hashing method, SHNet designs the hash coding network layer structure as a serial mode and verifies the first part of the serial hash codes in the process of generating hash codes, so as to make full use of the relevance and redundancy of codes to generate more informative, more compact, and more discriminative hash codes. Using mAP as the evaluation standard of retrieval performance, the study compares the proposed method with current mainstream hashing methods. The results show that the mAP values of the proposed method under different hash coding lengths are superior to those of the current mainstream deep hashing algorithm on the three datasets of CIFAR-10, ImageNet, and NUS-wide, which proves its effectiveness.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省普通高校人工智能重点领域专项(2019KZDZX1033); 广东省基础与应用基础研究基金(2021A1515011171); 广州市基础研究计划基础与应用基础研究项目(202102080282)
引用文本:
丁美荣,卢志毅,陈殷齐.基于串行编码校验的深度哈希图像检索.计算机系统应用,2023,32(4):42-51
DING Mei-Rong,LU Zhi-Yi,CHEN Yin-Qi.Deep Hashing Image Retrieval Based on Serial Code Check.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):42-51