###
计算机系统应用英文版:2023,32(4):177-186
本文二维码信息
码上扫一扫!
双裁切近端策略优化算法
(1.东莞理工学院 电子工程与智能化学院, 东莞 523808;2.东莞理工学院 计算机科学与技术学院, 东莞 523808)
Proximal Policy Optimization with Double Clipping Boundaries
(1.School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China;2.School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 680次   下载 1527
Received:August 23, 2022    Revised:September 27, 2022
中文摘要: 近端策略优化(proximal policy optimization, PPO)是一种稳定的深度强化学习算法, 该算法的关键点之一是使用裁切后的代理目标限制更新步长. 实验发现当使用经验最优的裁切系数时, KL散度 (Kullback-Leibler divergence)无法被确立上界, 这有悖于置信域优化理论. 本文提出一种改进的双裁切近端策略优化算法(proximal policy optimization with double clipping boundaries, PPO-DC). 该算法通过基于概率的两段裁切边界调整KL散度, 将参数限制在置信域内, 以保证样本数据得到充分利用. 在多个连续控制任务中, PPO-DC算法取得了好于其他算法的性能.
Abstract:Proximal policy optimization (PPO) is a stable deep reinforcement learning algorithm. The key process of the algorithm is to use clipped surrogate targets to limit step size updates. Experiments have found that when a clipping coefficient with optimal experience is employed, the upper bound of Kullback-Leibler (KL) divergence cannot be determined. This phenomenon is against the optimization theory of trust region. In this study, an improved PPO with double clipping boundaries (PPO-DC) algorithm is proposed. The algorithm adjusts the KL divergence based on two probability-based clipping boundaries and limits parameters to the trust region, so as to ensure that the sample data are fully utilized. In several continuous control tasks, the PPO-DC algorithm achieves better performance than other algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省普通高校重点科研平台和项目(2020ZDZX3075)
引用文本:
张骏,王红成.双裁切近端策略优化算法.计算机系统应用,2023,32(4):177-186
ZHANG Jun,WANG Hong-Cheng.Proximal Policy Optimization with Double Clipping Boundaries.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):177-186