###
计算机系统应用英文版:2023,32(4):274-282
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
面向轻量化网络的火焰快速识别
(1.太原科技大学 计算机科学与技术学院, 太原 030024;2.中北大学 大数据学院, 太原 030051)
Fast Flame Recognition for Lightweight Network
(1.College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China;2.School of Data Science and Technology, North University of China, Taiyuan 030051, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 542次   下载 1538
Received:September 01, 2022    Revised:September 30, 2022
中文摘要: 为解决火焰图像识别在边缘设备, 移动端设备环境下模型体积大, 准确率低, 实时性能差的问题. 首先选取ShuffleNetV2作为轻量化主干神经网络, 保证模型的实时性; 其次, 设计了一种新的注意力模块SCDAM (space and channel dual attention module)去同时考虑通道和空间的关联性, 针对不同特征的重要程度去赋予不同权重并有效提高模型精度; 然后, 设计了一种多尺度特征融合模块, 使提取到的特征在空间尺度上更加丰富, 加强网络对不同尺度的适应性; 最后将SCDAM模块以及多尺度模块引入到ShuffleNetV2中并利用迁移学习方式优化模型参数, 进一步提高模型精度. 在参数量和计算量仅有微量增加的情况下, 本算法的精度比ShuffleNetV2提升了3.2%, 且单次推理速度仅耗时8.7 ms. 实验证明, 该算法更加适合应用在计算资源有限情况下, 如火药火焰的识别与监控.
Abstract:Flame image recognition faces a large model size, low accuracy, and poor real-time performance in edge equipment and mobile terminal equipment environments. In order to solve these problems, firstly, ShuffleNetV2 is selected as a lightweight backbone neural network to ensure the real-time performance of the model. Secondly, a new space and channel dual attention module (SCDAM) is designed to analyze the relevance of channels and spaces, and different weights are given according to the importance of different features, so as to effectively improve the model accuracy. Then, in order to enrich the extracted features on the spatial scale, a multi-scale feature fusion module is designed to enhance the adaptability of the network to different scales. Finally, the SCDAM and multi-scale module are introduced into ShuffleNetV2, and the model parameters are optimized by transfer learning, so as to further improve the model accuracy. With only a slight increase in the amount of parameters and calculations, the accuracy of the proposed algorithm is 3.2% higher than that of ShuffleNetV2, and the single inference takes only 8.7 ms. Experiments show that the proposed algorithm is more suitable for conditions with limited computing resources, such as the identification and monitoring of gunpowder flame.
文章编号:     中图分类号:    文献标志码:
基金项目:教育部产学合作协同育人项目(202102076011); 山西省高校教学改革创新项目(J2021441); 山西省高等学校科技创新项目(2021L322); 太原科技大学研究生教育改革研究课题(XJG21019); 山西省基础研究计划(201801D121126, 20210302124165); 研究生教育创新项目(2019BY115, 2019BY107)
引用文本:
薛颂东,曹旺旺,王斌.面向轻量化网络的火焰快速识别.计算机系统应用,2023,32(4):274-282
XUE Song-Dong,CAO Wang-Wang,WANG Bin.Fast Flame Recognition for Lightweight Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):274-282