本文已被:浏览 715次 下载 1342次
Received:May 31, 2022 Revised:August 09, 2022
Received:May 31, 2022 Revised:August 09, 2022
中文摘要: 异常检测是机器学习与数据挖掘的热点研究领域之一, 主要应用于故障诊断、入侵检测、欺诈检测等领域. 当前已有很多有效的相关研究工作, 特别是基于隔离森林的异常检测方法, 但在处理高维数据时仍然存在许多困难. 提出了一种新的k近邻隔离森林的异常检算法: k-nearest neighbor based isolation forest (KNIF). 该方法采用超球体作为隔离工具, 利用第k近邻的方法来构建隔离森林, 并构建基于距离的异常值计算方法. 通过充分实验表明KNIF方法能有效地进行复杂分布环境下的异常检测, 并能适应不同分布形式的应用场景.
Abstract:Anomaly detection is one of the research focuses in machine learning and data mining, which is mainly used in fault diagnosis, intrusion detection, and fraud detection. There have been many effective related studies, especially those of the anomaly detection method based on isolation forest, but there are still many difficulties in the processing of high-dimensional data. A new anomaly detection algorithm, k-nearest neighbor based isolation forest (KNIF), is proposed. The method uses hyperspheres as an isolation tool, utilizes the k-nearest neighbor method to construct an isolation forest, and constructs a distance-based outlier calculation method. Sufficient experiments show that the KNIF method can effectively detect anomalies in complex distribution environments and can adapt to application scenarios of different distribution forms.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61772004); 福建省科技计划重大项目(2020H6011); 福建省自然科学基金(2020J01161)
Author Name | Affiliation | |
DING Peng-Lin | College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China | 273623994@qq.com |
Author Name | Affiliation | |
DING Peng-Lin | College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China | 273623994@qq.com |
引用文本:
丁鹏霖.基于k近邻隔离森林的异常检测.计算机系统应用,2023,32(2):199-206
DING Peng-Lin.Anomaly Detection Based on k-nearest Neighbor Isolation Forest.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):199-206
丁鹏霖.基于k近邻隔离森林的异常检测.计算机系统应用,2023,32(2):199-206
DING Peng-Lin.Anomaly Detection Based on k-nearest Neighbor Isolation Forest.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):199-206