本文已被:浏览 698次 下载 2238次
Received:June 28, 2022 Revised:July 25, 2022
Received:June 28, 2022 Revised:July 25, 2022
中文摘要: 针对虹膜图像中存在眼镜遮挡、模糊、角度偏差等不同噪声因素, 我们设计了一种基于Mask R-CNN的卷积神经网络(convolutional neural network, CNN), 命名为Mask-INet, 用于虹膜分割. 该网络在特征提取阶段为特征金字塔添加了一条自底向上的路径, 既提高了底层到顶层特征的定位信息, 增强语义信息融合, 又进一步加快了底层到顶层的传播效率, 有效提升对虹膜特征提取的准确性. 为了进一步挖掘特征图中的特征信息, 在掩模预测分支阶段, 我们引入上采样和CBAM网络(convolutional block attention module), 利用上采样提高特征图的空间分辨率, 利用CBAM网络让特征图中的显著信息更加显著, 增强对特征的判别性. 该方法在NIR-ISL 2021比赛提供的虹膜数据集进行了验证. 在相同实验条件下与该赛事的冠军相比, 该方法的各项指标均优于其网络. 与基线Mask R-CNN相比, 该方法的Dice相似系数、平均交并比、召回率分别提升了8.53%、11.97%、8.88%, 提升了虹膜分割效果.
Abstract:In response to different noises in iris images, such as occlusion by glasses, blur, and angle deviation, this study designs a convolutional neural network (CNN) embedded with Mask R-CNN, named Mask-INet, for iris segmentation. The network adds a bottom-up path to the feature pyramid in the feature extraction stage, which not only improves the localization information of bottom-to-top features and enhances semantic information fusion but also further accelerates bottom-to-top propagation efficiency and effectively improves the accuracy of iris feature extraction. To further explore the feature information in the feature map, the study introduces upsampling and a convolutional block attention module (CBAM) network in the mask prediction branching stage. Upsampling is used to improve the spatial resolution of the feature map, and the CBAM network helps make the salient information in the feature map more significant so as to enhance the discrimination capacity for the features. The method is validated on the iris dataset provided by the NIR-ISL 2021 competition. The method outperforms the network of the champion of the event in terms of all indicators under the same experimental conditions. Compared with the baseline Mask R-CNN, the proposed method has the Dice similarity coefficient, mean intersection over union (mIoU), and recall improved by 8.53%, 11.97%, and 8.88%, respectively, which boosts iris segmentation performance.
keywords: iris segmentation feature pyramid Mask R-CNN residual network (ResNet) convolutional?block?attention?module (CBAM) image segmentation
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划 (2020YFA0608001); 国家自然科学基金面上项目 (42075142); 四川省科技厅科技计划 (2022YFG0026, 2021YFG0018, 2020JDTD0020, 2019ZDZX0007)
引用文本:
敬红燕,彭静,吴锡,李孝杰.基于Mask R-CNN卷积神经网络的虹膜分割.计算机系统应用,2023,32(2):83-93
JING Hong-Yan,PENG Jing,WU Xi,LI Xiao-Jie.Mask R-CNN-embedded Convolutional Neural Network for Iris Segmentation.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):83-93
敬红燕,彭静,吴锡,李孝杰.基于Mask R-CNN卷积神经网络的虹膜分割.计算机系统应用,2023,32(2):83-93
JING Hong-Yan,PENG Jing,WU Xi,LI Xiao-Jie.Mask R-CNN-embedded Convolutional Neural Network for Iris Segmentation.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):83-93