###
计算机系统应用英文版:2023,32(2):75-82
本文二维码信息
码上扫一扫!
融合深度主动学习的医学图像半自动标注系统
(1.复旦大学 计算机科学技术学院 上海市智能信息处理重点实验室, 上海 200433;2.上海浦东复旦大学张江科技研究院, 上海 200120;3.复旦大学附属儿科医院, 上海 201102)
Semi-automatic Labeling System for Medical Images Based on Deep Active Learning
(1.Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China;2.Fudan Zhangjiang Institute, Shanghai 200120, China;3.Children’s Hospital of Fudan University, Shanghai 201102, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 747次   下载 2249
Received:June 16, 2022    Revised:August 15, 2022
中文摘要: 目前深度学习在医学图像分析领域取得的良好表现大多取决于高质量带标注的数据集, 但是医学图像由于其专业性和复杂性, 数据集的标注工作往往需要耗费巨大的成本. 本文针对这一问题设计了一种基于深度主动学习的半自动标注系统, 该系统通过主动学习算法减少训练深度学习标注模型所需的标注样本数量, 训练完成后的标注模型可以用于剩余数据集的标注工作. 系统基于Web应用构建, 无需安装且能跨平台访问, 便于用户完成标注工作.
Abstract:At present, the good performance of deep learning in medical image analysis mostly depends on high-quality labeled datasets. However, due to the professionalism and complexity of medical images, the labeling of datasets often requires huge costs. To tackle this problem, this study designs a semi-automatic labeling system based on deep active learning. This system reduces the number of labeled samples required for the training of the labeling model based on deep learning through the active learning algorithm, and the trained labeling model can be used for labeling the remaining dataset. The system is built on the basis of a Web application, which does not require installation and can be accessed across platforms. It is convenient for users to complete the labeling work.
文章编号:     中图分类号:    文献标志码:
基金项目:科技创新2030-“新一代人工智能”重大项目(2021ZD0113501); 上海市科学技术委员会“科技创新行动计划” (20511101103, 21511104502, 21XD1402500)
引用文本:
王海林,冯瑞,张晓波.融合深度主动学习的医学图像半自动标注系统.计算机系统应用,2023,32(2):75-82
WANG Hai-Lin,FENG Rui,ZHANG Xiao-Bo.Semi-automatic Labeling System for Medical Images Based on Deep Active Learning.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):75-82