###
计算机系统应用英文版:2023,32(2):207-216
本文二维码信息
码上扫一扫!
基于云模型和余弦跳跃权重的改进蛙跳算法
(大连交通大学 自动化与电气工程学院, 大连 116021)
Improved Shuffled Frog Leaping Algorithm Based on Cloud Model and Cosine Leap Weights
(School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116021, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 503次   下载 1152
Received:June 24, 2022    Revised:July 25, 2022
中文摘要: 标准蛙跳优化算法(SFLA)有寻优精度低和易陷入局部收敛区域的缺点, 为提高其性能, 提出一种基于云模型局部搜索和余弦跳跃权重更新位置的改进蛙跳算法(CSFLA). 首先通过Tent混沌映射和反向学习生成种群, 使种群的分布更均匀, 利用云模型的正态特性对子群中的优秀个体的所在区域进行探索. 同时, 对种群中其他个体引入基于余弦函数的跳跃步长权重, 使该权重在整个迭代过程中由高以不同的速率下降, 提高种群的全局搜索能力. 最后, 将CSFLA与多个优化算法在不同类型的测试函数上进行了比较. 结果表明, CSFLA具有更好的收敛速度和精度, 能有效找出全局最优解. 并且将改进算法应用至旅行商问题, 该算法可以找到总路程更短的路线.
Abstract:The standard shuffled frog leaping algorithm (SFLA) for optimization has the shortcomings of low optimization accuracy and easy falling into a local convergence area. To improve its performance, this study proposes an improved SFLA (CSFLA) based on local search with a cloud model and cosine leap weight update position. First, Tent chaotic mapping and backward learning are performed to generate a population so that the population has a more uniform distribution. The area where the best individuals in the subpopulation are located is explored by taking advantage of the normal property of the cloud model. Then, the leaping step size weight based on the cosine function is introduced to other individuals in the population, which makes the weight decrease from a high level at different rates throughout the iterations to improve the global search ability of the population. Finally, CSFLA is compared with multiple optimization algorithms on different types of test functions. The results show that CSFLA has a better convergence speed and accuracy and can find the global optimal solution effectively. The improved algorithm is applied to the traveling salesman problem and proved able to find shorter routes.
文章编号:     中图分类号:    文献标志码:
基金项目:辽宁省自然科学基金(2019-zd-0108)
引用文本:
刘耿旗,张旭秀,马洪源.基于云模型和余弦跳跃权重的改进蛙跳算法.计算机系统应用,2023,32(2):207-216
LIU Geng-Qi,ZHANG Xu-Xiu,MA Hong-Yuan.Improved Shuffled Frog Leaping Algorithm Based on Cloud Model and Cosine Leap Weights.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):207-216