本文已被:浏览 1203次 下载 2390次
Received:March 20, 2022 Revised:April 14, 2022
Received:March 20, 2022 Revised:April 14, 2022
中文摘要: 针对无人机航拍场景下的实时目标检测任务, 以YOLOv5为基础进行改进, 给出了一种轻量化的目标检测网络YOLOv5-tiny. 通过将原CSPDarknet53骨干网络替换为MobileNetv3, 减小了网络模型的参数量, 有效提高了检测速度, 并进一步通过引入CBAM注意力模块和SiLU激活函数, 改善了因网络简化后导致的检测精度下降问题. 结合航拍任务数据集VisDrone的特性, 优化了先验框尺寸, 使用了Mosaic, 高斯模糊等数据增强方法, 进一步提高了检测效果. 与YOLOv5-large网络相比, 以降低17.4%的mAP为代价, 换取148%的检测效率(FPS)提升, 且与YOLOv5s相比, 在检测效果略优的情况下, 网络规模仅为其60%.
Abstract:A lightweight object detection network YOLOv5-tiny is given on the basis of YOLOv5 for real-time target detection tasks in drone-captured scenarios. The replacement of the original backbone network CSPDarknet53 with MobileNetv3 reduces the parameters of the network model and substantially improves the detection speed. Furthermore, the detection accuracy is improved by the introduction of the CBAM attention module and the SiLU activation function. With the characteristics of the aerial photography task dataset VisDrone, the anchor size is optimized, and data augmentation methods such as Mosaic and Gaussian blur are used to further improve the detection effect. Compared with the results of the YOLOv5-large network, the detection efficiency (FPS) is improved by 148% at the expense of a 17.4% reduction in mAP. Moreover, the network size is only 60% of that of YOLOv5 when the detection results are slightly superior.
文章编号: 中图分类号: 文献标志码:
基金项目:广西教育厅中青年科研基础能力提升项目(2019KY0805)
引用文本:
黄海生,饶雪峰.面向无人机航拍场景的轻量化目标检测.计算机系统应用,2022,31(12):159-168
HUANG Hai-Sheng,RAO Xue-Feng.Lightweight Object Detection for Drone-captured Scenarios.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):159-168
黄海生,饶雪峰.面向无人机航拍场景的轻量化目标检测.计算机系统应用,2022,31(12):159-168
HUANG Hai-Sheng,RAO Xue-Feng.Lightweight Object Detection for Drone-captured Scenarios.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):159-168