###
计算机系统应用英文版:2023,32(7):305-311
本文二维码信息
码上扫一扫!
基于注意力机制和高斯概率估计的PM2.5浓度预测
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.辽宁省生态环境监测中心, 沈阳 110161;4.沈阳市第二十二中学, 沈阳 110075)
PM2.5 Concentration Prediction Based on Attention Mechanism and Gaussian Probability Estimation
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Liaoning Ecological and Environmental Monitoring Center, Shenyang 110161, China;4.Shenyang No.22 Middle School, Shenyang 110075, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 650次   下载 1597
Received:January 14, 2022    Revised:February 15, 2022
中文摘要: 作为衡量空气污染物浓度的重要指标, 对PM2.5浓度进行监控预测, 能够有效地保护大气环境, 进一步地减少空气污染带来的危害. 随着空气质量自动监测站的大范围建立, 由传统的机器学习搭建的空气质量预测模型已经不能满足当今的需求. 本文提出了一种基于多头注意力机制和高斯概率估计的高斯-注意力预测模型, 并对沈阳市某监测站点的数据进行了训练和测试. 该模型考虑了PM2.5浓度受到其他空气质量数据的影响, 将空气质量数据的分层时间戳(周、日、小时)的信息对齐作为输入, 使用多头注意力机制对于不同子空间的时间序列关联特征进行提取, 能够获得更加完善有效的特征信息, 再经过高斯似然估计得到预测结果. 通过与多种基准模型进行对比, 相较于性能较优的DeepAR, 高斯-注意力预测模型的MSE、MAE分别下降了21%、15%, 有效地提高了预测准确率, 能够较准确地预测出PM2.5浓度.
中文关键词: PM2.5  高斯分布  注意力机制
Abstract:PM2.5 is an important indicator for measuring the concentration of air pollutants, and monitoring and predicting its concentration can effectively protect the atmospheric environment and further reduce the harm caused by air pollution. As automatic air quality monitoring stations are constructed on a large scale, the air quality prediction model built by traditional machine learning can no longer meet the current needs. This study proposes a Gaussian-attention prediction model based on the multi-head attention mechanism and Gaussian probability estimation and utilizes the data from a monitoring station in Shenyang for training and tests. Because PM2.5 concentration is affected by other air quality data, this model uses the information alignment of hierarchical time stamps (week, day, and hour) of air quality data as input and extracts the time-series correlation features of different subspaces with the multi-head attention mechanism. More complete and effective feature information is thereby obtained, and prediction results are then acquired by Gaussian likelihood estimation. A comparison with multiple benchmark models is conducted, and the mean squared error (MSE) and mean absolute error (MAE) of the proposed Gaussian-attention prediction model are respectively 21% and 15% lower than that of the DeepAR model. Effectively improving prediction accuracy, the proposed model can accurately predict PM2.5 concentration.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
杨柳,张镝,李建熹,康丽荥,赵思彤.基于注意力机制和高斯概率估计的PM2.5浓度预测.计算机系统应用,2023,32(7):305-311
YANG Liu,ZHANG Di,LI Jian-Xi,KANG Li-Xing,ZHAO Si-Tong.PM2.5 Concentration Prediction Based on Attention Mechanism and Gaussian Probability Estimation.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):305-311