###
计算机系统应用英文版:2022,31(11):373-379
本文二维码信息
码上扫一扫!
聚类概率矩阵分解的变分推断及应用
(1.中国科学技术大学 管理学院, 合肥 230026;2.中国科学技术大学 国际金融研究院, 合肥 230026)
Variational Inference of Probabilistic Matrix Factorization Based on Clustering and Its Application
(1.School of Management, University of Science and Technology of China, Hefei 230026, China;2.International Institute of Finance, University of Science and Technology of China, Hefei 230026, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 723次   下载 1471
Received:February 15, 2022    Revised:March 16, 2022
中文摘要: 概率矩阵分解模型根据用户历史交互信息个性化推荐商品, 是协同过滤中的经典方法之一. 传统矩阵分解假设下无法利用不同用户之间的相似性, 且在面对异常值时常预测失准. 根据用户聚类信息, 可构建共轭先验分布与类别相关的聚类概率矩阵分解模型, 同时改变相关共轭先验分布形式, 完成对参数作正则化处理. 通过变分推断, 理论推导变分参数的显式表达式, 从而建立相应评分预测算法. 模拟及真实数据集均表明该模型的预测性能优于基准模型, 并能对用户评分做出现实解释.
Abstract:Probabilistic matrix factorization model, making personalized item recommendations according to a user’s historical interaction information, is one of the classic methods in collaborative filtering. Under the assumption of the traditional matrix factorization model, the similarities among different users cannot be used, and prediction is often inaccurate when outliers occur. A clustering-based probabilistic matrix factorization model with category-related conjugate prior distribution is built with user clustering information. Its parameters are regularized by changing the form of the conjugate prior distribution. Through variational inference, the explicit expressions of variational parameters are theoretically derived, and corresponding rating prediction algorithms are thereby established. Both simulation and real datasets show that the prediction performance of the proposed model is better than that of the benchmark model, and it can provide realistic explanations for users’ rating behavior.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(71771201, 71874171, 71731010, 71631006, 71991464, 71871208, 72071193)
引用文本:
刘杰,叶子锋.聚类概率矩阵分解的变分推断及应用.计算机系统应用,2022,31(11):373-379
LIU Jie,YE Zi-Feng.Variational Inference of Probabilistic Matrix Factorization Based on Clustering and Its Application.COMPUTER SYSTEMS APPLICATIONS,2022,31(11):373-379