###
计算机系统应用英文版:2022,31(10):99-107
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
移动边缘计算网络中的资源分配与定价
(1.西南交通大学 信息科学与技术学院, 成都 610031;2.西南交通大学 计算机与人工智能学院, 成都 610031)
Resource Allocation and Pricing in Mobile Edge Computing Networks
(1.School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;2.School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610031, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 789次   下载 1634
Received:January 22, 2022    Revised:February 22, 2022
中文摘要: 移动边缘计算(mobile edge computing, MEC)使移动设备(mobile device, MD)能够将任务或应用程序卸载到MEC服务器上进行处理. 由于MEC服务器在处理外部任务时消耗本地资源, 因此建立一个向 MD 收费以奖励MEC服务器的多资源定价机制非常重要. 现有的定价机制依赖于中介机构的静态定价, 任务的高度动态特性使得实现边缘云计算资源的有效利用极为困难. 为了解决这个问题, 我们提出了一个基于Stackelberg博弈的框架, 其中MEC服务器和一个聚合平台(aggregation platform, AP)充当跟随者和领导者. 我们将多重资源分配和定价问题分解为一组子问题, 其中每个子问题只考虑一种资源类型. 首先, 通过MEC服务器宣布的单价, AP通过解决一个凸优化问题来计算MD从MEC服务器购买的资源数量. 然后, MEC服务器计算其交易记录, 并根据多智能体近端策略优化(multi-agent proximal policy optimization, MAPPO)算法迭代调整其定价策略. 仿真结果表明, MAPPO在收益和福利方面优于许多先进的深度强化学习算法.
Abstract:Mobile edge computing (MEC) enables mobile devices (MDs) to offload tasks or applications to MEC servers for processing. As a MEC server consumes local resources when processing external tasks, it is important to build a multi-resource pricing mechanism that charges MDs to reward MEC servers. Existing pricing mechanisms rely on the static pricing of intermediaries. The highly dynamic nature of tasks makes it extremely difficult to effectively utilize edge-cloud computing resources. To address this problem, we propose a Stackelberg game-based framework in which MEC servers and an aggregation platform (AP) act as followers and the leader, respectively. We decompose the multi-resource allocation and pricing problem into a set of subproblems, with each subproblem only considering a single resource type. First, with the unit prices announced by MEC servers, the AP calculates the quantity of resources for each MD to purchase from each MEC server by solving a convex optimization problem. Then, each MEC server calculates its trading records and iteratively adjusts its pricing strategy with a multi-agent proximal policy optimization (MAPPO) algorithm. The simulation results show that MAPPO outperforms a number of state-of-the-art deep reinforcement learning algorithms in terms of payoff and welfare.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
吕晓东,邢焕来,宋富洪,王心汉.移动边缘计算网络中的资源分配与定价.计算机系统应用,2022,31(10):99-107
LYU Xiao-Dong,XING Huan-Lai,SONG Fu-Hong,WANG Xin-Han.Resource Allocation and Pricing in Mobile Edge Computing Networks.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):99-107