###
计算机系统应用英文版:2022,31(11):290-295
本文二维码信息
码上扫一扫!
快速近似计算Shapley值的归因解释方法
(1.中国人民解放军陆军工程大学 指挥控制工程学院, 南京 210007;2.中国人民解放军32069部队, 北京 100091;3.中国人民解放军32269部队, 兰州 730030)
Attribution Explanation Method for Fast Approximation of Shapley Values
(1.College of Command & Control Systems, Army Engineering University of PLA, Nanjing 210007, China;2.32069 Unit of PLA, Beijing 100091, China;32269 Unit of PLA, Lanzhou 730030, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 882次   下载 2237
Received:January 28, 2022    Revised:February 24, 2022
中文摘要: Shapley值归因解释方法虽然能更准确量化解释结果, 但过高的计算复杂度严重影响了该方法的实用性. 本文引入KD树重新整理待解释模型的预测数据, 通过在KD树上插入虚节点, 使之满足TreeSHAP算法的使用条件, 在此基础上提出了KDSHAP方法. 该方法解除了TreeSHAP算法仅能解释树结构模型的限制, 将该算法计算Shapley值的高效性放宽到对所有的黑盒模型的解释中, 同时保证了计算准确度. 通过实验对比分析, KDSHAP方法的可靠性, 以及在解释高维输入模型时的适用性.
Abstract:Although the attribution explanation method based on Shapley value can quantify the interpretation results more accurately, the excessive computational complexity seriously affects the practicality of this method. In this study, we introduce the k-dimensional (KD) tree to reorganize the predicted data of the model to be explained, insert virtual nodes into the KD tree so that it meets the application conditions of the TreeSHAP algorithm, and then propose the KDSHAP method. This method lifts the restriction that the TreeSHAP algorithm can only explain tree models and broadens the efficiency of the algorithm in calculating Shapley value to the explanation of all black-box models without compromising calculation accuracy. The reliability of the KDSHAP method and its applicability in interpreting high-dimensional input models are analyzed through experimental comparisons.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
余晓晗,王从波,谢瑗瑗,张中辉,马荣.快速近似计算Shapley值的归因解释方法.计算机系统应用,2022,31(11):290-295
YU Xiao-Han,WANG Cong-Bo,XIE Yuan-Yuan,ZHANG Zhong-Hui,MA Rong.Attribution Explanation Method for Fast Approximation of Shapley Values.COMPUTER SYSTEMS APPLICATIONS,2022,31(11):290-295