###
计算机系统应用英文版:2022,31(10):134-141
本文二维码信息
码上扫一扫!
基于改进U-Net的下肢骨骼CT图像分割
(河海大学 信息学部 物联网工程学院, 常州 213022)
CT Image Segmentation of Lower Limb Bones Based on Improved U-Net
(College of Internet of Things Engineering, Information Department, Hohai University, Changzhou 213022, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 820次   下载 2189
Received:January 04, 2022    Revised:February 24, 2022
中文摘要: 针对骨骼CT图像对比度较低、特征不明显、现有算法对骨骼特征提取不充分的问题, 本文提出了一种基于U-Net的改进网络来实现骨骼数据的精确分割. 在网络编码阶段, 使用密集连接的空洞卷积模块加强骨骼特征的提取; 在网络解码阶段, 使用结合注意力机制的融合模块充分利用空间信息与语义信息, 改善骨骼信息丢失的问题. 改进算法在人体下肢骨骼CT数据集中Dice系数达89.44%, IoU系数达80.55%. 与U-Net模型相比, Dice系数提高了5.1%, IoU系数提高了7.63%. 实验结果表明, 提出的优化算法对下肢骨骼CT图像可以达到精确分割的效果, 对骨科疾病的治疗与术前规划提供了参考.
Abstract:This study proposes an improved U-Net for precise segmentation of bone data to solve the problems of low contrast, indistinct features, and insufficient extraction of bone features by existing algorithms in bone computed tomography (CT) images. In the network coding stage, the densely connected dilated convolution module is used to enhance the extraction of bone features; in the network decoding stage, the attention-based fusion module is adopted to make full use of spatial information and semantic information and thereby avoid the loss of bone information. When the improved algorithm is applied to a CT dataset of human lower limb bones, the Dice coefficient is 89.44%, and the intersection over union (IoU) coefficient is 80.55%. Compared with those obtained with the U-Net model, the Dice coefficient is increased by 5.1%, and the IoU coefficient is improved by 7.63%. The experimental results show that the proposed optimization algorithm can be employed to achieve precise segmentation of CT images of lower limb bones. It also provides a reference for the preoperative planning for orthopedic diseases and subsequent treatment.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金 (61772172)
引用文本:
刘金辉,童晶,倪佳佳,黎学飞,张旭.基于改进U-Net的下肢骨骼CT图像分割.计算机系统应用,2022,31(10):134-141
LIU Jin-Hui,TONG Jing,NI Jia-Jia,LI Xue-Fei,ZHANG Xu.CT Image Segmentation of Lower Limb Bones Based on Improved U-Net.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):134-141