###
计算机系统应用英文版:2022,31(10):122-133
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于STM R-CNN的热轧带钢表面缺陷检测
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.东北大学 计算机科学与工程学院, 沈阳 110169)
Surface Defect Detection of Hot-rolled Strip Steel Based on STM R-CNN
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1033次   下载 1886
Received:January 17, 2022    Revised:February 15, 2022
中文摘要: 为了提高工业热轧带钢表面缺陷检测的检测精度, 将深度学习研究领域的前沿技术应用于带钢表面缺陷检测. 提出了一种以Swin Transformer作为骨干特征提取网络, 级联多阈值结构作为输出层的热轧带钢表面缺陷检测算法. 将Transformer结构应用于带钢表面缺陷检测领域, 与单纯基于卷积网络的深度学习目标检测算法相比, 能够达到更加精确的检测效果. 首先, 使用Swin Transformer作为骨干特征提取网络代替常规的残差网络结构, 增强特征网络对隐含在图像中的深层语义信息的摄取能力. 其次设计多级联检测结构, 设置逐级的IoU阈值, 实现检测精度与阈值提升的权衡. 最后使用柔性非极大值抑制(Soft-NMS)、FP16混合精度训练和SGD优化器等训练策略加速模型收敛和提升模型性能. 实验结果表明: 本文算法在工业热轧带钢数据集(NEU-DET)上相较于YOLOv3、YOLOF、DeformDetr、SSD512和SSDLit等深度学习算法都有更好的检测效果, 在裂纹(crazing, Cr)、夹杂(inclusion, In)、斑块(patches, Pa)、麻点(pitted surface, PS)、压入氧化铁皮(rolled-inscale, RS)、以及划痕(scratches, Sc)等表面缺陷检测中训练速度和检测精度都有显著的提升, 漏检率显著降低.
Abstract:The cutting-edge technology in deep learning is applied to surface defect detection of strip steel for the accuracy improvement in surface defect detection of industrial hot-rolled strip steel. Therefore, a surface defect detection algorithm for hot-rolled strip steel is proposed, which takes Swin Transformer as the backbone feature extraction network and cascaded multi-threshold structure as the output layer. Compared with the deep learning target detection algorithm based solely on convolutional networks, the detection algorithm using the Transformer structure can achieve more accurate detection results. Specifically, first, Swin Transformer is used as the backbone feature extraction network to replace the conventional residual network structure and thus enhance the ability of the feature network to capture the deep semantic information implicit in an image. Secondly, a multi-cascade detection structure is designed, and step-by-step IoU thresholds are set to achieve the balance between detection accuracy and threshold improvement. Finally, training strategies such as soft non-maximum suppression (Soft-NMS), FP16 mixed precision training, and SGD optimizers are employed to accelerate model convergence and improve model performance. The experimental results reveal that the proposed algorithm has better detection performance on the industrial hot-rolled strip steel data set (NEU-DET) than the deep learning algorithms such as YOLOv3, YOLOF, DeformDetr, SSD512, and SSDLit. Additionally, the training speed and detection accuracy are significantly improved in the surface defect detection of crazing (Cr), inclusion (In), patches (Pa), pitted surface (PS), polled-in scales (RS), scratches (Sc), and other surface defects, and the missed detection rate is greatly reduced.
文章编号:     中图分类号:    文献标志码:
基金项目:辽宁省“兴辽英才计划”项目(XLYC1907001)
引用文本:
于波,张新凯,王卫.基于STM R-CNN的热轧带钢表面缺陷检测.计算机系统应用,2022,31(10):122-133
YU Bo,ZHANG Xin-Kai,WANG Wei.Surface Defect Detection of Hot-rolled Strip Steel Based on STM R-CNN.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):122-133