###
计算机系统应用英文版:2022,31(10):236-244
本文二维码信息
码上扫一扫!
基于XGBoost-PredRNN++的海表面温度预测
(1.东北大学 计算机科学与工程学院, 沈阳 110819;2.东北大学 医学影像智能计算教育部重点实验室, 沈阳 110169)
Sea Surface Temperature Prediction Based on XGBoost-PredRNN++
(1.School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;2.Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110169, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 942次   下载 2259
Received:January 07, 2022    Revised:February 17, 2022
中文摘要: 准确预测海表面温度对于海洋渔业生产、海洋动力环境信息预测预报等至关重要. 传统数值预报方法计算代价大、时效差, 而现有基于数据驱动的海表温预测方法大都针对单个观测点进行海表温预测, 不适合预测由多个观测点构成的某个区域的海表面温度, 而现有的区域海表温预测方法的预测精度仍然有待提高. 为此, 本文提出了一种基于XGBoost结合PredRNN++的区域海表温预测方法(XGBoost-PredRNN++), 该方法首先将海表面温数据处理成灰度图片, 然后利用XGBoost模型来提取每个点的时间特征; 在此基础上, 采用CNN网络将时间特征融合到原始海表温数据中, 同时提取出海表温数据之间的空间依赖关系; 最后利用PredRNN++时间序列预测模型提取整个海表温序列之间的时空关联关系, 从而实现了区域海表温度的高精度预测. 一系列实验结果表明, 本文提出的方法具有较高预测精度和效率, 明显优于现有预测方法.
中文关键词: 温度预测  PredRNN++  CNN  XGBboost  海面温度
Abstract:Accurate prediction of sea surface temperature (SST) is vital for marine fishery production and the prediction of marine dynamic environment information. The traditional numerical prediction methods have high calculation costs and low time efficiency. However, the existing data-driven SST prediction methods mainly target the single observation point and fail when it comes to a sea region composed of multiple observation points. The existing regional SST prediction methods still have a long way to go in prediction accuracy. Therefore, we propose a regional SST prediction method based on XGBoost and PredRNN++ (XGBoost-PredRNN++). The method firstly converts SST data into gray images and then extracts the time characteristics of each point by the XGBoost model. On this basis, the CNN network is utilized for fusing the time characteristics into the original SST data, and the spatial dependence is extracted at the same time. Finally, the latest time series prediction model PredRNN++ is adopted to extract the temporal and spatial correlations among SST data to achieve the high-precision prediction of regional SST. The experimental results show that the high prediction accuracy and efficiency of the proposed method are superior to those of the existing methods.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61872072); 国家重点研发计划(2019YFB1405302, 2016YFC1401900)
引用文本:
杜扬帆,伍孝飞,乔百友.基于XGBoost-PredRNN++的海表面温度预测.计算机系统应用,2022,31(10):236-244
DU Yang-Fan,WU Xiao-Fei,QIAO Bai-You.Sea Surface Temperature Prediction Based on XGBoost-PredRNN++.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):236-244