本文已被:浏览 605次 下载 1535次
Received:January 13, 2022 Revised:January 30, 2022
Received:January 13, 2022 Revised:January 30, 2022
中文摘要: 空气质量预测工作对于人们的生活日常出行具有非常重要的意义. 长短时记忆网络作为一种新型的深度学习循环神经网络, 对于时间序列数据表现出良好的预测能力. 但是针对神经网络模型在训练过程中一般凭借经验进行参数选择, 训练周期长, 预测精度低, 结果不可靠的问题, 本文提出了一种基于鲸鱼优化算法的双向长短时记忆网络模型, 即WOA (whale optimization algorithm)-BiLSTM (bidirectional long short-term memory)模型. 双向长短时记忆网络凭借其前向和后向的双向网络结构, 能够加强序列数据信息的记忆能力, 而WOA算法可以依据鲸鱼捕食时气泡网捕食的方法, 协助BiLSTM模型在训练过程中找到最优的网络参数. 将该模型用于陕西省AQI (air quality index)预测, 并分别和BiLSTM、LSTM模型进行对比, 发现本文提出的模型预测结果最好, MAE值为6.543 3, R2值达0.989 9. 将该模型用于空气质量预测领域具有良好的理论和实践意义.
Abstract:Air quality prediction is of great importance for people’s daily travel. As a new recurrent neural network (RNN) of deep learning, the long short-term memory (LSTM) network demonstrates good prediction ability for time sequence data. However, neural network models generally rely on experience for parameter selection during training and have a long training period, low prediction accuracy, and unreliable prediction results. Considering this, this study proposes a bidirectional LSTM model based on the whale optimization algorithm (WOA), namely, the WOA-BiLSTM model. Specifically, the BiLSTM network can enhance the memory capability of sequence data information by its forward and backward network structure, and WOA can assist the BiLSTM model in finding the optimal network parameters during the training process on the basis of the bubble-net hunting strategy of whales. The model is applied for air quality index (AQI) prediction in Shaanxi Province and compared with BiLSTM and LSTM models separately, and it is found that the proposed model registers the best prediction result with the MAE value of 6.543 3 and R2 value of 0.989 9. Therefore, the model is of solid theoretical and practical significance for applications in air quality prediction.
keywords: deep learning BiLSTM model whale optimization algorithm (WOA) optimal parameters air quality index forecast
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金青年项目(51908059); 长安大学博士研究生创新能力培养项目(300203211241); 长安大学实验教学改革研究项目(20211814)
引用文本:
刘英,裴莉莉,郝雪丽.基于WOA-BiLSTM模型的空气质量指数预测.计算机系统应用,2022,31(10):389-396
LIU Ying,PEI Li-Li,HAO Xue-Li.Air Quality Index Prediction Based on WOA-BiLSTM Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):389-396
刘英,裴莉莉,郝雪丽.基于WOA-BiLSTM模型的空气质量指数预测.计算机系统应用,2022,31(10):389-396
LIU Ying,PEI Li-Li,HAO Xue-Li.Air Quality Index Prediction Based on WOA-BiLSTM Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):389-396