###
计算机系统应用英文版:2022,31(9):173-182
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于拓扑结构约束和特征增强的医学影像标志点定位算法
(复旦大学 计算机科学技术学院, 上海 200438)
Landmark Localization Algorithm for Medical Images Based on Topological Constraints and Feature Augmentation
(School of Computer Science, Fudan University, Shanghai 200438, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 739次   下载 1716
Received:December 27, 2021    Revised:January 29, 2022
中文摘要: 现有的医学影像标志点定位算法未能很好地利用医学影像本身固有的特点, 且不能很好地感知医学影像蕴含的精细特征. 本文提出基于拓扑结构约束和特征增强的医学影像标志点定位算法, 利用标志点之间的拓扑结构不变性来提升算法的定位精度, 并通过为网络引入多分辨率注意力机制和多分支空洞卷积模块实现增强特征的提取, 使得网络不仅可以加强对重要特征的关注, 还可以在不增加计算量和参数量的情况下提升对上下文特征的感知能力. 使用公开数据集的实验表明, 本文提出的算法在各个指标上均超过了当前主流算法, 具有较高的标志点定位精度.
Abstract:The existing landmark localization algorithms for medical images cannot make good use of the inherent characteristics of medical images and cannot well perceive their subtle features. Therefore, this study proposes a landmark localization algorithm for medical images, which is based on topological constraints and feature augmentation. It uses the invariant topological structure among landmarks to improve the localization accuracy of the algorithm, and multi-resolution attention mechanisms and multi-branch dilated convolution modules are introduced into the network to extract augmented features. The network can not only pay more attention to important features but also improve the perception of context features without increasing the amount of computation and the number of parameters. Experiments on public datasets demonstrate that the proposed method outperforms the current mainstream algorithms in every indicator and achieves higher accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:上海市市级科技重大专项(2017SHZDZX01)
引用文本:
张灵西.基于拓扑结构约束和特征增强的医学影像标志点定位算法.计算机系统应用,2022,31(9):173-182
ZHANG Ling-Xi.Landmark Localization Algorithm for Medical Images Based on Topological Constraints and Feature Augmentation.COMPUTER SYSTEMS APPLICATIONS,2022,31(9):173-182