###
计算机系统应用英文版:2022,31(8):212-222
本文二维码信息
码上扫一扫!
基于动态卷积的体素内不相干运动成像参数估计
(贵州大学 计算机科学与技术学院 贵州省智能医学影像分析与精准诊断重点实验室, 贵阳 550025)
Estimation of Intravoxel Incoherent Motion Imaging Parameters Based on Dynamic Convolution
(Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 613次   下载 1406
Received:November 25, 2021    Revised:December 22, 2021
中文摘要: 体素内不相干运动(IVIM)磁共振成像是一种能够表征生物组织内水分子扩散和灌注的无创技术. 传统IVIM参数估计方法受到图像噪声的影响, 参数估计效果不佳. 为了准确、快速地确定组织区域的扩散和灌注参数信息, 本文充分考虑来自于体素信号之间的上下文信息和b值对于IVIM参数的贡献程度, 提出一种基于动态卷积模块的一维卷积神经网络(dynamic convolutional neural network, DCNN)估计IVIM参数. 在具有不同噪声水平的测试仿真数据和真实采集图像上, 与传统的IVIM参数估计方法进行了比较. 实验结果表明, 本文提出的DCNN方法能够降低IVIM参数的变异系数、偏差和相对均方根误差, 提高了参数一致性和鲁棒性的同时, 仍具有较高的IVIM参数视觉质量.
Abstract:Intravoxel incoherent motion (IVIM) magnetic resonance imaging is a non-invasive technique, which can characterize the diffusion and perfusion of water molecules in biological tissues. Traditional IVIM parameters estimation methods are highly affected by the noise, and the parameter estimation is not effective. In order to accurately and quickly determine the diffusion and perfusion parameters in tissue regions, this study proposesd a one-dimensional dynamic convolutional neural network (DCNN) based on the dynamic convolutional module to estimate IVIM parameters. It takes into account the contextual information between the voxel signals and the contribution of b-values, to estimate IVIM parameters. The DCNN is compared with the traditional estimation method on the test simulation data and real acquisition images underwith different noise levels. The experimental results show that the proposed DCNN method can reduce the coefficient of variation, bias, and relative root mean square error of the IVIM parameters and, improve the parameter consistency and robustness, and have good visual quality at the same time.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62161004); 中法蔡元培项目(N.41400TC); 贵州省科技计划(ZK[2021]Key 002, [2018]5301)
引用文本:
邓开轩,程欣宇,王丽会.基于动态卷积的体素内不相干运动成像参数估计.计算机系统应用,2022,31(8):212-222
DENG Kai-Xuan,CHENG Xin-Yu,WANG Li-Hui.Estimation of Intravoxel Incoherent Motion Imaging Parameters Based on Dynamic Convolution.COMPUTER SYSTEMS APPLICATIONS,2022,31(8):212-222