本文已被:浏览 578次 下载 1479次
Received:October 31, 2021 Revised:November 29, 2021
Received:October 31, 2021 Revised:November 29, 2021
中文摘要: 驾驶辅助系统被认为是解决交通安全问题的有效手段, 开发驾驶辅助系统的基础是对车辆的行为进行准确的识别, 以应用于车辆安全预警, 路径规划, 智能导航等方面. 目前存在的基于支持向量机模型, 隐马尔科夫模型, 卷积神经网络等行为识别方法还存在计算量与精度平衡的问题. 本文结合了隐马尔科夫模型与高斯混合模型, 提出了高斯混合隐马尔科夫模型, 利用美国联邦公路管理局NGSIM数据集对此方法进行了实验验证, 结果表明该方法对自由换道行为识别具有较高的精度. 本文还对高斯混合隐马尔科夫模型的实验参数进行了优化, 以期达到最好的识别效果, 为未来智能驾驶的车辆行为识别提供了参考.
Abstract:The driver assistance system is considered the first choice for solving traffic safety problems. The basis of developing a driver assistance system is to accurately recognize the vehicle behavior for applications in aspects such as vehicle safety warning, path planning, and intelligent navigation. The existing behavior recognition methods based on the support vector machine model, hidden Markov model, and convolutional neural network still face the imbalance problem between calculation amount and accuracy. This study proposes a Gaussian mixture hidden Markov model, which is a combination of the hidden Markov model and the Gaussian mixture model. The model is experimentally verified on the NGSIM data set from the Federal Highway Administration of the USA, and the results reveal that the model has higher accuracy in the recognition of free lane-changing behavior. Additionally, this study optimizes the parameters of the proposed model to achieve the best recognition effect and provide a reference for the vehicle behavior recognition of intelligent driving in the future.
keywords: free lane change behavior recognition hidden Markov model (HMM) Gaussian mixture model NGSIM data set
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金 (52172325)
引用文本:
杨志强,朱家伟,穆蕾,安毅生.基于高斯混合隐马尔科夫模型的自由换道识别.计算机系统应用,2022,31(8):388-394
YANG Zhi-Qiang,ZHU Jia-Wei,MU Lei,AN Yi-Sheng.Recognition of Free Lane Change Based on Gaussian Mixture Hidden Markov Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(8):388-394
杨志强,朱家伟,穆蕾,安毅生.基于高斯混合隐马尔科夫模型的自由换道识别.计算机系统应用,2022,31(8):388-394
YANG Zhi-Qiang,ZHU Jia-Wei,MU Lei,AN Yi-Sheng.Recognition of Free Lane Change Based on Gaussian Mixture Hidden Markov Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(8):388-394