###
计算机系统应用英文版:2022,31(7):379-385
本文二维码信息
码上扫一扫!
基于贝叶斯优化XGBoost的隧道沉降量预测
(1.中交隧道工程局有限公司, 北京 100102;2.中交一公局集团有限公司, 北京100020;3.长安大学 公路学院, 西安 710064;4.长安大学 信息工程学院, 西安 710064)
Prediction of Tunnel Subsidence Based on Bayesian Optimized XGBoost
(1.CCCC Tunnel Engineering Co. Ltd., Beijing 100102, China;2.CCCC First Highway Engineering Group Co. Ltd., Beijing 100020, China;3.School of Highway, Chang’an University, Xi’an 710064, China;4.School of Information Engineering, Chang’an University, Xi’an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 705次   下载 1732
Received:October 15, 2021    Revised:November 12, 2021
中文摘要: 公路隧道在建设过程中易受到地理环境等因素的影响, 山体结构的不稳定可能会产生潜在的安全隐患, 而隧道沉降量是反应隧道结构变化的一项重要指标, 因此提出一种基于贝叶斯优化XGBoost的隧道沉降监测量预测模型. 由于隧道施工场景复杂干扰严重, 给数据采集和后期沉降变化分析带来困难, 本文首先对原始沉降监测数据进行时间尺度统一, 然后融合时域和空域信息对数据中的异常值、缺失值进行数据修复, 在此基础上, 提出贝叶斯优化的XGBoost集成模型对隧道监测的周边收敛、地表沉降和拱顶沉降数据分别进行分析. 通过与优化前模型以及时序预测模型预测结果进行对比, 发现贝叶斯优化的XGBoost模型精度最高, 对拱顶沉降、地表沉降、周边收敛的平均预测精度可以达到0.979 4. 该模型能够对隧道沉降变化过程进行有效的监测与预测, 对于隧道安全问题的监管具有重要的实际应用价值.
Abstract:Highway tunnels are susceptible to the influence of the geographical environment and other factors during the construction. The instability of the mountain structure may cause potential safety hazards, and tunnel subsidence is an important indicator of changes in the tunnel structure. Therefore, the model based on Bayesian optimized XGBoost is proposed to predict the tunnel subsidence. The complexity and serious interference of the tunnel construction scene hamper data collection and subsequent change analysis of subsidence. First, the time scale of the original subsidence monitoring data is unified. In accordance with time domain and spatial domain information, the outliers and missing values are repaired. Finally, the integrated Bayesian optimized XGBoost model is used to analyze the peripheral convergence, surface subsidence, and vault subsidence. Compared with the original XGBoost model and long short-term memory (LSTM) model, the Bayesian optimized XGBoost model has the highest accuracy. The average prediction accuracy of vault subsidence, surface subsidence, and peripheral convergence can reach 0.979 4. This model can effectively monitor and predict the change process of tunnel subsidence, which is of importance for practical application during the supervision of tunnel safety.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2018YFB1600202); 长安大学博士研究生创新能力培养项目(300203211241)
引用文本:
何军,林广东,申小军,徐龙飞,裴莉莉,余婷.基于贝叶斯优化XGBoost的隧道沉降量预测.计算机系统应用,2022,31(7):379-385
HE Jun,LIN Guang-Dong,SHEN Xiao-Jun,XU Long-Fei,PEI Li-Li,YU Ting.Prediction of Tunnel Subsidence Based on Bayesian Optimized XGBoost.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):379-385