本文已被:浏览 722次 下载 1483次
Received:October 14, 2021 Revised:November 08, 2021
Received:October 14, 2021 Revised:November 08, 2021
中文摘要: 传统的故障分类方法大多假设不同类别的数据样本量是相似或相等的. 然而在实际的工业过程中采集到的数据多数是正常数据, 少部分是故障数据, 这就造成了数据的不平衡. 针对不平衡数据问题, 本文提出了一种K-means Bayes与AdaBoost-SVM相结合的故障分类方法, 通过设计两种独立的分类器, 并利用D-S证据理论对分类结果融合, 以弥补各自对某些类别分类能力较弱的缺陷. 实验证明, 本文提出的故障分类方法与单一Bayes或SVM比较, 具有更高的分类准确率.
中文关键词: 故障分类 不平衡数据 K-means Bayes AdaBoost-SVM 证据融合 机器学习
Abstract:Traditional fault classification methods mostly assume similar or equal sample sizes for different types of data. However, the bulk of data collected in the actual industrial process is normal with a minority belonging to fault data, which causes data imbalance. Aiming at the imbalanced data, this study proposes the fault classification method combining K-means Bayes with AdaBoost-SVM. Two independent classifiers are designed with the D-S evidence theory to merge the classification results, so as to make up for their weak classification capabilities for certain categories. Experiments show that the fault classification method proposed in this study has higher classification accuracy than single Bayes or SVM.
keywords: fault classification imbalanced data K-means Bayes AdaBoost-SVM evidence fusion machine learning
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(51405-01B02)
引用文本:
黄子扬,周凌柯.基于K-means Bayes和AdaBoost-SVM的故障分类.计算机系统应用,2022,31(7):239-246
HUANG Zi-Yang,ZHOU Ling-Ke.Fault Classification Based on K-means Bayes and AdaBoost-SVM.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):239-246
黄子扬,周凌柯.基于K-means Bayes和AdaBoost-SVM的故障分类.计算机系统应用,2022,31(7):239-246
HUANG Zi-Yang,ZHOU Ling-Ke.Fault Classification Based on K-means Bayes and AdaBoost-SVM.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):239-246