###
计算机系统应用英文版:2022,31(7):278-284
本文二维码信息
码上扫一扫!
基于改进UNet网络的烧结矿气孔分割
(安徽工业大学 计算机科学与技术学院, 马鞍山 243032)
Segmentation of Sinter Pores Based on Improved UNet Network
(School of Computer Science and Technology, Anhui University of Technology, Maanshan 243032, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 809次   下载 1462
Received:September 30, 2021    Revised:October 25, 2021
中文摘要: 在烧结矿生产过程中, 烧结矿形成的气孔是烧结矿的质量评估的重要参数. 由于烧结矿的气孔形状不一、气孔边缘模糊等问题, 导致分割出的气孔误差率较大. 为了能更准确地分割出气孔, 先对烧结矿图像进行OpenCV图像预处理. 对比传统的图像分割算法, 本文提出一种基于改进UNet网络对预处理后的烧结矿气孔图像进行分割的算法. 在UNet网络编码中引入残差和拼接连接结合思想的改进模块, 以获得更多的气孔特征信息. 实验结果表明, 改进的算法在MIoU和Dice指标均优于传统UNet网络和传统图像分割.
Abstract:In the process of sinter production, the pores formed in the sinter are an important parameter for sinter quality evaluation. Due to the different shapes of sinter pores and their fuzzy edge, the error rates of pores segmented are large. In order that the pores can be segmented more accurately, the sinter image is preprocessed by OpenCV. Through a comparative analysis of the traditional image segmentation algorithm, this study proposes an algorithm based on an improved UNet network to segment the preprocessed sinter pore image. An improved module integrating residual and splicing is introduced into UNet network coding to obtain more information on pore features. The experimental results show that the improved algorithm is better than both the traditional UNet network and the traditional image segmentation algorithm in mean intersection over union (MIoU) and the Dice index.
文章编号:     中图分类号:    文献标志码:
基金项目:安徽省重点实验室研究项目(TZJQR002-2021);安徽高校自然科学研究项目(KJ2019A0063)
引用文本:
周思雨,储岳中,张学锋.基于改进UNet网络的烧结矿气孔分割.计算机系统应用,2022,31(7):278-284
ZHOU Si-Yu,CHU Yue-Zhong,ZHANG Xue-Feng.Segmentation of Sinter Pores Based on Improved UNet Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):278-284