本文已被:浏览 1157次 下载 2557次
Received:July 15, 2021 Revised:August 24, 2021
Received:July 15, 2021 Revised:August 24, 2021
中文摘要: 基于转移的快速扩展随机树(T-RRT)算法, 能够较快寻找到机器人在二维复杂成本空间的低危险度路径, 但面对无人机的三维飞行工况, 其规划结果较差, 针对此问题, 提出了一种基于探索、启发和转移的EHT-RRT (exploring heuristic transition-based RRT)算法. 首先, 算法在T-RRT的基础上引入A*算法中的启发式思想, 进行启发式成本探索, 从危险度、路径长度、路径偏转角度和高度变化估计路径成本, 以提高路径质量; 接着, 利用局部节点滑移策略, 让路径偏向低危险区域, 并对每个节点添加局部最好方向属性; 最后, 通过随机方向、目标方向和局部最好方向, 3个方向向量改进树节点扩展机制, 摆脱T-RRT算法在路径寻找上的盲目性. 同时, 算法采用了20%概率的目标点偏置, 提升规划效率. 仿真实验表明, 与同样添加20%目标点偏置的T-RRT、BT-RRT和T-RRT*算法相比, EHT-RRT算法可生成路径更短、安全性更高、更加平滑的三维路径, 能更好地解决复杂城市环境下的无人机三维路径规划问题.
Abstract:A transition-based rapidly-exploring random tree (T-RRT) algorithm can quickly find a low-risk path for a robot in a two-dimensional complex cost space, but it delivers a poor planning result for an unmanned aerial vehicle (UAV) in the three-dimensional flight condition. To solve this problem, this study proposes an exploring heuristic transition-based RRT (EHT-RRT) algorithm. The algorithm introduces the heuristic idea of the A* algorithm on the basis of the T-RRT to explore the heuristic cost, and it estimates the path cost from the perspectives of risk degree, path length, path deflection angle, and height change to improve the quality of the path. Then, the local node slip strategy is employed to make the path deviate to the low-risk area, and the local best direction attribute is added to each node. At last, the tree node exploration mechanism is improved through three directional vectors, i.e., random direction, target direction, and local best direction, to get rid of the blindness of the T-RRT algorithm in path finding. In addition, a target point offset with a probability of 20% is used to improve the planning efficiency. The results of simulation experiments show that compared with T-RRT, BT-RRT, and T-RRT* algorithms with the same target point offset each, the EHT-RRT algorithm can generate a shorter, safer, and smoother 3D path and better solve the 3D path planning problem of UAV in complex urban environments.
keywords: rotary-wing UAV complex cost space 3D path planning exploring heuristic transition-based RRT (EHT-RRT) transition-based rapidly-exploring random tree (T-RRT)
文章编号: 中图分类号: 文献标志码:
基金项目:湖南省自然科学基金(2020JJ4201)
引用文本:
卢成阳,王文格.复杂城市环境下无人机三维路径规划.计算机系统应用,2022,31(5):184-194
LU Cheng-Yang,WANG Wen-Ge.3D Path Planning of UAV in Complex Urban Environment.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):184-194
卢成阳,王文格.复杂城市环境下无人机三维路径规划.计算机系统应用,2022,31(5):184-194
LU Cheng-Yang,WANG Wen-Ge.3D Path Planning of UAV in Complex Urban Environment.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):184-194