###
计算机系统应用英文版:2022,31(5):364-370
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
改进DBSCAN算法在校园轨迹数据相似性的应用
(天津理工大学, 天津 300384)
Application of Improved DBSCAN Algorithm in Similarity of Campus Trajectory Data
(Tianjin University of Technology, Tianjin 300384, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 503次   下载 1455
Received:August 08, 2021    Revised:September 13, 2021
中文摘要: 针对如何更准确地分析校园无线网络数据中隐藏的社交关系亲密度, 本文提出了改进DBSCAN时空聚类算法. 首先, 通过采集校园无线网络数据, 在根据学生连接WiFi的地点, 时间等信息形成时空轨迹. 运用改进的算法对时空轨迹聚类. 其次, 对聚类结果进行特征轨迹提取, 运用LCSS算法进行相似性对比, 轨迹间相似度越高说明关系比较亲密; 相似度越低, 可能是较孤僻的学生, 老师需要进一步排查和引导教育. 最后, 运用FinBI对轨迹聚类结果可视化展示. 实验结果表明, 该算法提高了聚类结果的准确性和有效性, 为解决其他相似性问题提供思路.
中文关键词: WiFi  时空轨迹  DBSCAN  轨迹相似性  聚类算法
Abstract:An improved DBSCAN spatiotemporal clustering algorithm is proposed to increase the intimacy analysis accuracy of social relationships hidden in campus wireless network data. First, spatiotemporal trajectories are formed according to the location and time of the WiFi connection by collecting campus wireless network data, and an improved algorithm is used to classify the spatiotemporal trajectories. Then, the characteristic trajectories of the clustering results are extracted, and the LCSS algorithm is employed to measure the similarity of spatiotemporal trajectories. The high similarity between the trajectories indicates the close relationships, and the low similarity reveals those isolated students that need to be further investigated and counseled by teachers. Finally, FinBI is used to visualize the trajectory clustering results. The experimental results show that the improved algorithm can increase the accuracy and effectiveness of the clustering results while providing a reference for solving other similarity problems.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
张瑛玺,王法玉.改进DBSCAN算法在校园轨迹数据相似性的应用.计算机系统应用,2022,31(5):364-370
ZHANG Ying-Xi,WANG Fa-Yu.Application of Improved DBSCAN Algorithm in Similarity of Campus Trajectory Data.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):364-370