本文已被:浏览 876次 下载 2290次
Received:April 28, 2021 Revised:July 01, 2021
Received:April 28, 2021 Revised:July 01, 2021
中文摘要: 针对移动机器人定位系统中单一传感器定位精度低与环境地图的重要性问题, 提出了一种基于多传感器融合的移动机器人定位方法. 首先, 在未知环境下, 分别利用单一里程计, 扩展卡尔曼滤波(extended Kalman filter, EKF)算法融合里程计、惯性测量单元(inertial measurement unit, IMU)进行定位, 实验表明他们存在累积误差; 然后, 在已知环境下, 利用自适应蒙特卡洛定位(adaptive Monte Carlo localization, AMCL)算法, 融合里程计、IMU、激光雷达进行定位. 最后, 实验结果表明, 该方法可以对累积误差进行校正, 相较于未知环境下的单一里程计定位与EKF算法融合定位, 误差均值分别减少了68%、30%, 验证了所提出定位方法的有效性以及环境地图的重要性.
Abstract:In view of the low positioning accuracy of a single sensor and the importance of the environment map in the mobile robot positioning system, this paper proposes a mobile robot localization method based on multi-sensor fusion. Firstly, in an unknown environment, this paper respectively uses a single odometer and fused odometer and inertial measurement unit (IMU) by extended Kalman filter (EKF) algorithm to estimate the position. Experiments show that they have cumulative errors. Then, in a known environment, adaptive Monte Carlo localization (AMCL) algorithm is used to integrate odometer, IMU and lidar for positioning. The experimental results show that the method can correct the cumulative errors. Compared with the single odometer positioning and fusion positioning based on the EKF algorithm in an unknown environment, the proposed method has the average positioning error reduced by 68% and 30% respectively, which proves the effectiveness of multi-sensor fusion positioning and the importance of environment maps.
keywords: mobile robot positioning multi-sensor fusion extended Kalman filter (EKF) adaptive Monte Carlo
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金面上项目(61873169)
引用文本:
袁千贺,田昕,沈斯杰.基于多传感器融合的移动机器人定位.计算机系统应用,2022,31(3):136-142
YUAN Qian-He,TIAN Xin,SHEN Si-Jie.Mobile Robot Localization Based on Multi-sensor Fusion.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):136-142
袁千贺,田昕,沈斯杰.基于多传感器融合的移动机器人定位.计算机系统应用,2022,31(3):136-142
YUAN Qian-He,TIAN Xin,SHEN Si-Jie.Mobile Robot Localization Based on Multi-sensor Fusion.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):136-142