本文已被:浏览 835次 下载 1256次
Received:May 20, 2021 Revised:June 14, 2021
Received:May 20, 2021 Revised:June 14, 2021
中文摘要: 蜉蝣算法是一种受蜉蝣飞行及交配行为启发的新型群智能优化算法, 具有良好的寻优性能, 但其在求解高维复杂问题时依然存在因失效蜉蝣而影响算法效率的问题. 鉴于此, 提出一种偏移进化蜉蝣算法(migration evolutionary mayfly algorithm, MEMA). 针对蜉蝣种群进行个体能力评价, 剔除种群中生命周期较长但进化能力较弱的个体, 同时以其为据点进行全局位置偏移, 以获取新生个体. 对新个体进行指向性动态进化训练, 从而提升种群整体优化能力. 最后在Matlab环境下, 随机抽取了6个benchmark测试函数设计仿真实验以验证MEMA算法的有效性, 实验结果表明, 相比于其他5种对比算法, MEMA算法在低维及高维函数测试中均能更好地实现最优解搜索, 在收敛精度、收敛速度以及鲁棒性等方面均具备一定优势.
Abstract:The mayfly algorithm is a new type of swarm intelligence optimization algorithm inspired by mayfly flight and mating behavior. It has good optimization performance, but its efficiency is affected by failure mayflies when faced with high-dimensional and complex problems. In view of this, a migration evolutionary mayfly algorithm (MEMA) is proposed in this paper. First, the individual ability of the mayfly population is evaluated, and individuals with a long life-cycle but weaker evolutionary ability are eliminated from the population. At the same time, with those eliminated ones as strongholds, a global position shift is performed on the mayfly population to obtain new individuals. Then, directional dynamic evolution training is carried out on new individuals to improve the overall optimization ability of the population. Finally, in the Matlab environment, six benchmark test functions are randomly selected to design simulation experiments for the effectiveness verification of the MEMA algorithm. The experimental results show that compared with the other five comparison algorithms, the MEMA algorithm outperforms in both low-dimensional and high-dimensional function tests for the optimal solution search, and it has advantages in convergence accuracy, convergence speed, and robustness.
keywords: mayfly optimization algorithm Swarm intelligence optimization algorithm life cycle migration speed adjustment
文章编号: 中图分类号: 文献标志码:
基金项目:宁波市自然科学基金(202003N4159); 国家级大学生创新创业训练计划(202013277008)
引用文本:
王克逸,符强,陈嘉豪.偏移进化蜉蝣优化算法.计算机系统应用,2022,31(3):150-158
WANG Ke-Yi,FU Qiang,CHEN Jia-Hao.Migration Evolutionary Mayfly Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):150-158
王克逸,符强,陈嘉豪.偏移进化蜉蝣优化算法.计算机系统应用,2022,31(3):150-158
WANG Ke-Yi,FU Qiang,CHEN Jia-Hao.Migration Evolutionary Mayfly Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):150-158