本文已被:浏览 949次 下载 2426次
Received:April 19, 2021 Revised:May 19, 2021
Received:April 19, 2021 Revised:May 19, 2021
中文摘要: 为了避免人们边行走边使用手机发生危险, 本文提出了实时性强的轻量级模型(Mobile-YOLOv3)来检测路面障碍. 我们在广州各地拍摄路障图片并标注了一个路障数据集, 使用了一个轻量级的MobileNetv1网络来替换YOLOv3的骨干网络实现轻量化, 并且应用了4个方法用于提高检测精度和模型的鲁棒型. 4个方法分别为: 边框回归损失函数CIOU、分类损失函数Focal、预测框筛选算法Soft-NMS、负样本训练. 实验结果证明, 该模型获得了98.84% 的MAP. 与YOLOv3对比, 该模型的规模缩减了2.5倍, 检测精度却提高了7%.
Abstract:To avoid the danger of people using mobile phones while walking, this study proposes a lightweight model (Mobile-YOLOv3) with strong real-time performance to detect road obstacles. We photograph roadblocks and annotate a roadblock data set around Guangzhou City. Lightweight is achieved by the replacement of the backbone network of YOLOv3 with a lightweight MobileNetv1 network. In addition, we apply four methods to improve detection accuracy and model robustness, i.e., border regression loss function CIOU, classification loss function Focal, prediction box screening algorithm Soft-NMS, and negative sample training. The experimental results show that the model obtains 98.84% MAP. Compared with YOLOv3, this model has the scale reduced by 2.5 times but the detection accuracy improved by 7%.
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
QI Yong-Kang | School of Computer Science, South China Normal University, Guangzhou 510631, China | qyk59914@163.com |
Author Name | Affiliation | |
QI Yong-Kang | School of Computer Science, South China Normal University, Guangzhou 510631, China | qyk59914@163.com |
引用文本:
齐永康.基于MobileNet与YOLOv3的路面障碍检测轻量化算法.计算机系统应用,2022,31(2):176-184
QI Yong-Kang.Lightweight Algorithm of Road Obstacle Detection Based on MobileNet and YOLOv3.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):176-184
齐永康.基于MobileNet与YOLOv3的路面障碍检测轻量化算法.计算机系统应用,2022,31(2):176-184
QI Yong-Kang.Lightweight Algorithm of Road Obstacle Detection Based on MobileNet and YOLOv3.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):176-184