本文已被:浏览 755次 下载 1561次
Received:April 21, 2021 Revised:May 19, 2021
Received:April 21, 2021 Revised:May 19, 2021
中文摘要: 车牌图像重建是实现智能交通的重要步骤. 在经过不断的重复实验后, 本文提出了一种新的基于生成对抗网络(GAN)的超分辨率车牌图像重建模型. 所提出的办法主要包括4个部分: (1)预处理输入图像, 包括调整图片大小和筛选对比度差的图片; (2)引入了残差密集网络, 能够充分提取车牌图像特征; (3)引入渐进式采样进行图片重建, 因其具有较大的感受野, 能提供更多的信息细节; (4)引入基于PatchGAN的鉴别器模型, 该模型能更加精准地判断, 从而引导生成器进行更高质量、更多细节的图像重建. 通过在CCPD数据集上与目前较优的算法进行比较, 证明本文的模型重建的车牌图像具有较高的PSNR和SSIM, 分别达到了26.80和0.77, 而且重建单帧图像的花费时间更少, 仅为0.06 s, 进而证明了我们算法的可行性.
中文关键词: 超分辨率图像重建 生成对抗网络(GAN) 残差密集网络 渐进式上采样
Abstract:License plate image reconstruction plays an important role in the intelligent transportation system. After repeated experiments, a super-resolution image reconstruction method for license plates is proposed with the help of generative adversarial networks (GANs). The method mainly consists of four parts: (1) pretreatment of the input image, including image resizing and filtering of images with poor contrast; (2) image feature extraction using a residual dense network; (3) introduction of progressive sampling, which can provide a larger receptive field and more information details; (4) introduction of a discriminator based on PatchGAN to make a more accurate judgment, which guides the generator to reconstruct images with higher quality and more details. The comparison with a current superior algorithm on the Chinese City Parking Dataset (CCPD) proves that the proposed model has higher PSNR and SSIM (26.80 and 0.77, respectively) and less time of reconstructing a single-frame image (only 0.06 s), which verifies the feasibility of the proposed approach in license plate image reconstruction.
keywords: super-resolution reconstruction generative adversarial network (GAN) residual dense network progressive upsampling
文章编号: 中图分类号: 文献标志码:
基金项目:广州市科技计划项目重点领域研发计划(202007030005);广东省自然科学基金面上项目(2019A1515011375);国家自然科学基金面上项目(62076103)
引用文本:
刘良鑫,林勉芬,周成菊,潘家辉.基于深度学习的车牌超分辨率重建.计算机系统应用,2022,31(2):234-240
LIU Liang-Xin,LIN Mian-Fen,ZHOU Cheng-Ju,PAN Jia-Hui.Super-resolution Reconstruction of License Plates Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):234-240
刘良鑫,林勉芬,周成菊,潘家辉.基于深度学习的车牌超分辨率重建.计算机系统应用,2022,31(2):234-240
LIU Liang-Xin,LIN Mian-Fen,ZHOU Cheng-Ju,PAN Jia-Hui.Super-resolution Reconstruction of License Plates Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):234-240