本文已被:浏览 720次 下载 1115次
Received:April 06, 2021 Revised:April 29, 2021
Received:April 06, 2021 Revised:April 29, 2021
中文摘要: 针对数据分类预测模型的生成中, 高度不平衡的训练数据会大幅降低模型的性能, 本文提出了一种改进的基于遗传思想的不平衡数据集过采样方法, 该方法从生物染色体遗传理论中得到启发, 利用近亲生成相似而又不完全相同的新实例来平衡多数类, 在保证样本分布不变的前提下, 减弱甚至消除不平衡数据对训练结果的偏差影响. 最后, 通过在公共数据集上的对比实验表明, 该方法取得了更高的召回率及G-mean值, 证明此改进方法行之有效, 所生成模型的综合性能有所提高.
Abstract:In the generation of data classification prediction models, highly unbalanced training data will significantly degrade the performance of the model. Therefore, this study proposes an improved oversampling method for unbalanced data sets based on genetic ideas. Inspired by the chromosome theory of inheritance in biology, this method uses close relatives to generate similar but not identical new instances to balance the majority of classes. Under the premise of the same sample distribution, the bias influence of unbalanced data on the training results is reduced or even eliminated. Finally, a comparative experiment on a public data set shows that the method has achieved a higher recall rate and G-mean value, which proves that the improved method is effective and the comprehensive performance of the generated model has been promoted.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
丁胜夺,赵刚,阎红巧,刘洪太.基于遗传理论的改进数据过采样方法.计算机系统应用,2022,31(2):185-190
DING Sheng-Duo,ZHAO Gang,YAN Hong-Qiao,LIU Hong-Tai.Improved Data Oversampling Method Based on Genetic Theory.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):185-190
丁胜夺,赵刚,阎红巧,刘洪太.基于遗传理论的改进数据过采样方法.计算机系统应用,2022,31(2):185-190
DING Sheng-Duo,ZHAO Gang,YAN Hong-Qiao,LIU Hong-Tai.Improved Data Oversampling Method Based on Genetic Theory.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):185-190